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IMIRODUCTIOW 

Atomic Kocoil Chemistry 

Hot atom choiiiir.tr,y is tho study of tho chomic.i.'l. réaction;; of .'itomx 

possessing kinetic and/or electronic energy in excess of their thermal 

or equilibrium values. The chemistry observed is usually significantly 

different from the thermally equilibrated species as a result of the 

excess energy brought into the system by the hot atom. 

In a thermal reaction system, there exist only a limited number of 

reaction pathways. These pathways are threshold reactions or reactions 

involving transition states of low activation energy. As the energy 

brought into the system is increased, higher energy reaction pathways 

become successively available, their direction being determined by the 

internal energy of the activated complex and the rate of energy transfer 

to the surrounding medium. 

Atomic recoil chemistry is that section of hot atom chemistry 

concerned with the reaction of kinetically energetic atoms produced as 

a result of a nuclear transformation. The nuclear event usually pro­

duces an atom with a very high kinetic energy (10^-10^ eV). The results 

of the primary interaction of this kinetically energetic atom are best 

classified as radiation chemistry. As the atom loses its energy by 

successive collisional encounters with the medium^, it enters a region in 

which the interactions can be described as chemical in nature involving 

the recoiling atom and the molecule in a 'transition state' with definite 

lifetimes and pathways which produce molecular species containing the 

recoil atom. These secondary species may be stable molecules but more 

likely are highly excited molecules or molecular fragments which may be 
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radical in nature, undergoing chemical reactions which are dependent upon 

the chemical composition of their environment and upon the activated 

state in which they are produced. The initial reactive encounter can 

occur over the whole chemical energy range, from the- thermal kinetic 

equilibrium value up to the maximum energy at which a transition state 

complex can be postulated. The final observed product spectrum may be 

thought of as resulting from the primary and secondary interactions of 

these atoms and molecular fragments with the medium under investigation. 

It is the province of hot atom chemistry to study these inter­

actions with the purpose of obtaining useful information that will aid 

in the eventual understanding of the interesting and relatively 

unexplored subject of high energy chemistry. 

In using the nuclear technique to produce the recoil atoms one out 

of necessity chooses a system in which the product nucleus is radio­

active. The activity serves to label the products and permits the 

application of sensitive radiochemical analytical techniques. 

In this dissertation the recoil reactions of atomic carbon in con­

densed phase systems of methanol, ethanol, 1-and 2-propanol, diethyl 

ether, acetone, methyl acetate and methyl formate are discussed. 

Historical Background 

Recoil chemistry was born in the work of Szilard and Chalmers in 

1934 (1). They bombarded ethyl iodide with fast neutrons causing the 

^^'^l(n,Y)^^^I reaction and they observed that a fraction of the radio­

active iodine could be extracted into an aqueous phase and after 

reduction precipitated as silver iodide. In explanation, they postulated 

that the recoil energy imparted to the iodine atom during the (n,Y) 
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process was sufficient to break the C-I bond. Until this classic 

experiment, the product nucleus from the (n,Y) reaction with elements of 

A>30 had been found to be inseparable from the target material (2). 

Amaldi, et al. (3) suggested that since the y-recoil er^rgy was suf­

ficient to eject the active atom from its molecule, i6 was therefore 

probable that the residual activity in the organic phase was due to the 

ejected active atom entering another molecule. They also suggested that 

thermal neutrons should initiate similar results. These predictions 

were soon verified (4,5). Glueckauf and Fay (4) irradiated a number of 

alkyl halides with slow neutrons and observed evidence for organic 

synthesis. The radioactive halogen atom remaining in organic combination 

was found to be predominantly in the same chemical form as the irradiated 

halide but new chemical species were also produced. By dilution of 

bromoform with an inert solvent, carbon disulfide, they were also able 

to demonstrate that within experimental error, every halogen atom that 

captures a neutron is ejected from its molecule. This fact was also 

verified by Suess (6) in gas phase neutron irradiations of ethyl 

bromide, Barkas, et al, (7) using the (Y,n) process, obtained results 

qualitatively similar to those obtained from neutron bombardment of 

ethyl bromide and correctly concluded that the separation was not 

restricted to the (n,Y) process. 

As a result of the availability of neutron sources, the favorable 

neutron capture cross sections, and the desirable chemical properties 

of the alkyl halides, a huge body of data has been accumulated on the 

recoil reactions in these systems. In an attempt to correlate these 

experimental results, a number of models have been proposed. 
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According to the "billiard-ball" model proposed by libby (3,9)> 

atoms with recoil energies of a few hundred electron volts interact and 

lose energy in the liquid and solid alkyl halides by momentum transfer 

during elastic collisions with single atoms. The collisions are similar 

in character to those which would occur in a loose assembly of nonbonded 

atoms. For head-on collisions vâth atoms of similar mass, most of the 

kinetic energy can be transferred to the struck atom. If the recoil atom 

is left with kinetic energy below a certain critical value necessary 

for escape from the collision site, bond formation with the molecular 

radical may result. If on the other hand, the collision is between 

atoms of unequal mass (e.g-, between I^^S hydrogen) momentum con­

siderations indicate that the residual velocity of the recoil atom would 

insure its escape from the collision site so that the probability of 

combination between the recoil atom and the molecular radical would be 

very low. This hypothesis would predict that all recoil atoms which 

re-enter organic combination must do so as the parent compound. 

This model was extended by Friedman and libby (10) in order to 

account for sizable yields of labeled organic compounds different from 

the parent molecule. In this modification, they proposed that a 

different type of energy transfer occurred when the recoil atom was 

reduced to energies near 10 eV. In this "epithermal region", the recoil 

atom collides inelastically with the molecule as a whole promoting 

molecular excitation and bond rupture. If the atom does not have 

sufficient residual energy to leave the solvent "cage" it will combine 

with these radicals producing a variety of molecular products, 

A theoretical extension of Libby's elastic collisions hypothesis 
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was presented by Miller, et al. (11) in 1950» The theory was developed 

in terms of a rnjdel involving energy loss by elastic collisions, 

dissociation of solvent molecules by impact, and eventual reaction in a 

liquid "cage". Expressions were derived which related the fraction of 

the recoil atoms in a given molecular species to the composition and 

properties of the liquid. The predictions of this theory were in 

reasonable agreement with results already in the literature as well as 

with some of their own data (12), A very similar theoretical approach 

was presented by Capron and Oshima (13) in 1952. 

In i960, Estrup and Wolfgang (14) developed a model for the 

kinetics of hot atom reactions in the gas phase. The total probability 

that a hot atom will react before losing its kinetic energy was expressed 

in terms of the average collisional energy loss and the efficiency of 

Lhci i'nacLlun upon oollitiion, Tho itiodol prodicLoii 1.116 rolaLivu nl'j'ccL 

of inert moderating confounds and provided a measure of the relative 

energy at which various products were formed. This theory was tested 

(15) using experimental data on the effect of moderators upon the 

reactions of hot hydrogen with methane and the results were found to 

be in quantitative accord with the theory. This theory was later 

extended to binary systems of molecular reactants (I6). 

The reactions in the liquid and solid phases present a very-

different problem from those in the gas since the collisional phenomenon 

are quite complex and the role of the surrounding molecular debris 

may be of distinct influence, V&th these facts in mind and with 

increasing experimental evidence concerning the inadequacy of the 

"billiard ball collision-epithermal collision" hypothesis (17-19), 
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Willard (20) in 1953 proposed his "random fragmentation" model. This 

model assumes that the recoil atom inelastically interacts with the 

solvent molecules as a •whole rather than by elastic collisions with 

individual atoms. These interactions result in random fragmentation 

and excitation of the medium in the vicinity of the energetic atom. 

IVhen the energy of the recoil atom is reduced below that sufficient to 

rupture bonds, it will find itself adjacent to a pocket of radicals 

and inorganic atoms in high concentration. It may immediately react 

to form a stable compound, a "hot process", or it may enter a stable 

combination by a "thermal process" after diffusing into the medium. 

Such thermal reactions are vulnerable to competition from low concen­

trations of added radical scavengers (e.g. I2, DPPH and olefins). 

The relative numbers and specific types of organic and inorganic 

fragments formed will then depend upon the chemical nature, crystal 

structure, and density of the medium and on the mass and possibly the 

energy of the recoil atom. This theory does not completely rule out 

"billiard-ball" type replacements but does reduce their significance. 

Although this theory successfully correlated a considerable fraction 

of the then present literature, definite evidence soon was forthcoming 

vjliicli ûûriipltiLôly alter ad tlie approach Lo atoirulc i-ccoll . 

Hornig, Levey and Willard (18) in their now classic work observed 

128 
gas phase organic synthesis for the recoil iodine atom, CH^ 4 I > 

128 1oQ 
CH^ I. The yield of CH^ " I was as high as 50/^ and reaction was 

found to be a result of a kinetically energetic iodine atom. These 

results are inconsistent with libby's "billiard-ball" hypothesis and 

in direct conflict with Willard*s "random fragmentation" model. 
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Further studies have demonstrated the inadequacy of these models 

(21-23) and the trend in recent years has been away from the purely 

physical approach and towards a more unifying mechanistic approach 

that talces into account the chemical environment which the recoil atom 

encounters. 

In recent years, a number of excellent reviews have appeared 

(20,24-35) which taken in their entirety provide a very complete 

picture of the past work and present status of hot atom chemistry. 

Recoil Carbon Chemistry 

Introduction 

Significant progress in the study of the recoil reactions of 

atomic carbon has been made in recent years. This progress can be 

linked to two important advances. The first one has been the 

developement of the gas chromatograph (36,37) and its application (38) 

to the separation of the products resulting from the hot atom reactions. 

The second which was made possible by the first was the increasing use 

of the short lived carbon-11 isotope. Carbon has two isotopes convenient 

for use in recoil studies, carbon-14 and carbon-11. Carbon-14 was 

discovered by Ruben and Kamen (39) in.1941 and is conveniently pro­

duced by the nuclear reaction, ̂ \(n,p)^^C. Because of the availability 

of neutron sources, the reactions of recoil carbon-14 were the first 

14 
to be considered. The (n,p) reaction on N produces a carbon atom 

with a recoil energy of about 42 keV. 

The first recoil study involving carbon-l4 was reported by 

lankwich, et al. (40). They irradiated a variety of inorganic and 
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organic nitrogen containing compounds for two years with neutrons from 

the 60-inch Berkeley cyclotron. They interpreted their results in 

terms of carbon atom interactions and reaction with the solvent and 

molecular fragments and postulated possible reactive- intermediates 

such as CH, CO, CN, and CH2. Although the radiochemical yield of 

products was rather low, the overall results did encourage Yankvri.ch to 

speculate as to the usefulness of hot atom chemistry in synthesizing 

carbon-14 labeled compounds. This last statement indicates the direction 

of a significant fraction of the early carbon-l4 work (41-46). This 

area of recoil carbon chemistry has been thoroughly discussed in a 

recent review article by Wolf (26). 

As an increasing amount of data became available, inquiries as to 

the location of the radioactive carbon in the product molecule (47-52) 

and to the mechanism for the product formation were made (53-56), 

The long half life of carbon-14, 5730 yr, coupled with the relatively 

low reaction cross section for its formation makes long irradiation 

periods necessary for the production of useful quantities of radio­

carbon, As a result, the sample is exposed to a very high radiation 

field for long periods of time and radiation modifications of the 

primary products may result. This effect was observed by Yang and 

Wolf (57) in their study of the recoil reactions of carbon-l4 in 

gaseous ammonia. Methane-^^C accounted for nearly all of the radio­

carbon produced but traces of methylamine-^^C were also noted. In 

a later study of the same system using carbon-11 produced by the 

^\(p,<<)^C reaction, Cacace and Wolf (58) showed that radiolytic 

reduction of the methylamine to methane occurred at doses greater 
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than 10"^ eV/raolecule. The absorbed dose in the carbon-l4 work was 

between 0.4 and 1,2 eV/molecule. As a consequence, the observed pro­

duct spectrum was a result of extensive modification of the primary 

products and was not indicative of the actual reactions of tho hot 

atoms. 

All of the curront mechanistic studies use carbon-11 as tho recoil 

isotope. This isotope was discovered by Yost, Ridenour, and Shinohara 

(59) in 1935 but its first reported use in the hot atom field did not 

occur until 1953 (60). Because of its short half life (20.4 min), a 

rapid separation of the recoil products is required. This is conven­

iently accomplished in organic systems by using gas chromatography. 

The use of carbon-11 has significantly increased the latitude of the 

experimental variables. Irradiations can frequently be performed at 

any temperature with the compound in any phase. The radiation damage 

to the system is variable over wider limits and can be kept at a lower 

level than has been possible in the carbon-l4 studies. Degradative 

.iLiuiiori Lu lûoat,& the. position of the acLive carbon in tlio iVivmIvioL 

molecule are very difficult in this system because the short half life 

requires a rapid separation, degradation, and counting procedure. In 

many cases this problem can be solved by using the carbon-l4 system. 

Carbon-11 can be produced by a variety of techniques, a number of 

which are; 1) ̂^C(Y,n)^^C using >25 MeV bremsstrahlung; 2) ̂ ^C(n,,2n)^^C, 

12 11 
using fast neutrons; 3) the C(Pt foil) C neutron stripping reaction; 

12 -] 1 14 11 
4) C(p,pn) C, using 45 MeV protons; and 5) . M(p,«<) C, using 8 MeV 

protons, A majority of these techniques are able to produce usable 

quantities of carbon-11 at radiation dose levels of 10 ̂  eV/molecule 
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or lower. Even at this low level, radiation modification of the system 

cannot be discounted. 

Organic hydrocarbon systems 

The C-H bond "insertion-decomposition" mechanism first proposed 

by MaoKay and Wolfgang (6l) to account for the formation of the observed 

large yields of acetylene in single hydrocarbons, has had considerable 

success when applied to the mechanistic interpretation of the formation 

of other observed products. This mechanism postulates that a car'oon 

atom can insert into a C-H bond of an organic molecule, e.g. 

The resultant adduct, is definitely excited and not 

necessarily internally equilibrated, can fragment to a stable molecule 

like acetylene or into reactive intermediates (e.g. CH, CH2, C2H, CgH^, 

etc.). It may also stabilize or rearrange to form the corresponding 

alkene, The pathways available to this excited 

adduct will depend upon its total energy and how this energy is dis­

tributed within the complex. It will also depend upon the rate of 

energy transfer to the surrounding medium and as a consequence, the 

phase of the system may be important in the determination of the 

overall product spectrum. 

Acetylene has been observed to be a major product in all of the 

organic systems studied to date and a considerable effort has been 

made in recent years to elucidate the mechanism for its formation. 

Phase studies (32,62,63) have shown that the initial adduct formed in 

the reaction of carbon atoms with an alkane has a life time long in 

comparison with bond vibration frequency and can collisionally 
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deactivate. This suggested to Ache and Wolf (64) that the energy of 

this complex might be low enough that bond energy effects might 

change the "excitation-decomposition" sequence. This led them to a 

study of the bond energy effects on acetylene production in the alkyl 

halides and propane systems. They observed that 85^ or more of the 

11 
acetylene- C produced from the specifically deuterated hydrocarbons, 

CD^CHgCH^, CH2CD2CH2, and CD^CHgCD^ from the deuterated alkyl 

halides, CD^CH^X and CH^CDgX, is either isotopically pure C2H2 or 

C2D2. Since the deuterium label served as a probe for the point of 

attack of the hot atom, the results indicated that the reaction is 

mainly intramolecular and locali'/od. Sitrdlar double labelling studies 

on other systems have confirmed these results (65,66), A regular 

increase was also noted in the proportion of the hot yield of acetylene 

from the -CH2X group, where X is CF^, F, CI, Br, and I. This yield 

increase was found to be proportional to the decreasing C-C bond 

dissociation energy and the largest increase was observed from the 

-CHgl group. These results were interpreted in support of the 

"excitation-decomposition" mechanism. In addition, Ache and Wolf 

presented evidence indicating a higher probability for acetylene pro­

duction from the methyl group than from the methylene group, the ratio 

(CzHzïcHg/CCzHzïcHg being = 1.9/group. 

Dubrin, MacKay and Wolfgang (67) proposed that the triplet carbon 

atom, C(^P), was the primary precursor to acetylene in ethylene. They 

envisioned a rapid unimolecular reaction involving a spin conservation 

mechanism in which the triplet carbon atom inserted into either the 

C-H or C=C bond forming an excited adduct that could either decompose 
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to acetylene or other fragments or add to another ethylene molecule 

forming hj'drocarbon products. These spin restrictions have been 

questioned by Wolf (32) on the basis that the rules for electronic 

transitions need not be strictly obeyed in an encounter of this sort 

since it involves a complex containing considerable excess energy which 

is partially a result of the conversion of translational energy into 

internal energy. Evidence for spin conservation in the reaction of 

thermal carbon atoms has been presented by Skell (68-72). These recent 

studies are of considerable interest and will be the topic of a later 

section of this introduction. 

Carbon atom attack at the double bond in olefinic hydrocarbon 

was first postulated by MacKay, et. al. (73) in. 1962. They envisioned 

the formation of a cyclopropylidene type intermediate which unless 

suitably substituted would rapidly collapse to a diene. Support for 

this hypothesis was obtained from degradative studies of the aliéné 

produced by the reaction of carbon atoms with ethylene (7^). The 

results of this experiment indicated that the aliéné was predominantly 

center labelled (the ratio of center to end labelled aliéné was 

approximately 2:1 and independent of phase) and that both C-H and C=C 

insertion reactions were important. Double tracer studies using equal 

molar mixtures of and 02^)1^ demonstrated that the aliéné contained 

all of the hydrogens of the attacked ethylene molecule and confirmed 

that aliéné is predominantly formed by the interaction of a carbon atom 

with a single ethylene molecule (75). 

The possible role of the methyne intermediate (CH) in the carbon 

reaction scheme was first mentioned by MacKay and Wolfgang (6l) and 
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was suggQsted by Rack and Voigt (76) as a possible alternative inter­

mediate in the production of acetylene. The chemistry of this inter­

mediate has been virtually unknown until recent years. In the carbon 

recoil systems, methyne can conceivably be formed by either the 

"insertion-decomposition" mechanism or by a hydrogen abstraction 

process. This intermediate is believed to exhibit insertion properties 

similar to that of the carbon atom and has been singled out as the major 

11 
precursor to the ethylene- C observed in saturated hydrocarbon systems 

(63). The yield of ethylene in these systems has been found to be 

directly proportional to the fraction of primary hydrogens. Noglipiblo 

yields were observed in the to cyclic hydrocarbons. These results 

were interpreted in terms of the insertion of the methyne radical into 

a primary C-H bond followed by scission of the adjacent C-C bond (77)• 

RCH. + > [R-CHg - > R* + CH2=CH2 

Evidence for the formation and reaction of methyne in the H2 - C2Hj^ 

system has recently been presented by MacKay, Nicholas, and Wolfgang 

(78). The methyne formed by the reaction of carbon atoms with 

hydrogen was observed to react with ethylene to give an allyl radical 

which reacted further to yield pentene-1. 

Safrany, Reeves, and Harteck (79) observed the reaction of CH 

with ammonia in an acetylene-oxygen flame. They postulated that the 

methyne radical reacted with ammonia to form HCN, Hg and H* and 

reported a rate constant of 6x10^^ mole ̂  cc sec ^ for the reaction. 

Spectral evidence for CH from vacuum UV flash photolysis of methane was 

reported by Braun, McNesby and Bass (80). In this study, the rate 

constants for the reactions of methyne with CHjij., N2 and H2 were 
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deternâned. The methyne radical was observed to react with methane to 

1 ? 
form ethylene and a hydrogen atom with a rate constant of 1,5x10 ' 

moles ^ CO sec The reaction with hydrogen yielded the methyl 

radical but the products from the reaction with nitrogen were not 

determined. The rate constants were 6.2x10^^ mole"^ cc sec"^ and 

4.3x10^® mole"^ cc sec~^, respectively. 

The participation of the methylene intermediate (CHg) in these 

reactions has been inferred from the resultant product distribution of 

the saturated alkanes in recoil studies of the saturated 

alkane systems. Wolf (51) observed a statistical insertion of mothyleno 

into the C-H bonds of pentane to give labelled hexanes and a similar 

statistical insertion in toluene to give ethyl benzene and labelled 

xylenes. The results were in agreement with the indiscriminate reaction 

of methylene first observed by Doering, et al, (8l) in photolysis 

studies of diazomethane in liquid n-pentane and 2,3-dimethylbutane and 

are consistent with the postulated methylene insertion reaction (82), 

MacKay and Wolfgang (6l) observed that the relative yields of the 

butanes produced in the gaseous propane system were in agreement with 

the expected gas phase insertion ratios (83). Additional support was 

obtained by Stoecklin and Wolf (63) in their study of the gaseous, 

liquid and solid propane systems. Recent results in this laboratory 

have confirmed this statistical distribution for a number of 

hydrocarbons (84,85), 

The gas phase reactions of methylene are known to be more 

discriminate (86) and chemical evidence has been obtained which indi­

cates that methylene may react in more than one spin state (8?), 
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In the reactions of photolytically produced methylene with isopentane 

vapor, Carr (88) has shown that triplet CHg abstracts hydrogen and 

singlet methylene inserts into C-H bonds with about the same reactivity 

and that the abstraction reaction is much more selective than the 

insertion reaction. The abstraction selectivity is in the order tert > 

sec > prim in the ratio 8.9:1.5:1 and the insertion selectivity is in 

the same order but with a ratio, 1.5:1*3:1. The observed selectivity 

for gas phase methylene was noted to be somewhat greater than in the 

liquid and was consistant with earlier findings (81,89). Methylene 

has also been shown to add to the C=C bond with the formation of 

cyclopropanes (81). Spin conservation is observed for these additions 

(90) and the selectivity of addition over insertion is found to be 

onor^y dopondont (91). 

Hydrogen abstraction by triplet methylene or the insertion decom­

position reaction by singlet methylene will produce methyl radicals 

("CHg). Evidence for methyl radical production in recoil carbon systems 

was first presented by Schuler (92). He observed a 3.3^ yield of 

methyl iodide-^^C in the iodine scavenged cyclohexane system. In a 

ïnore recent study in the same system, Clark and Voigt (93) observed a 

3.0^ reduction of the methane yield upon addition of scavenger 

quantities of iodine. These results indicated that the iodine had 

reacted with radicals which otherwise would have abstracted or 

picked up hydrogen to form methane, although methyl radical reaction 

with radiation produced radicals was not ruled out. Evidence for 

reactions of radicals with other radicals was first presented 

by Jewett (85) who observed that the yield of CH^I was significantly 
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greater than the reduction of methane in the iodine scavenged 

hydrocarbon systems. A similar trend was observed by the author in the 

methanol and ethanol systems. 

Since methane is the last product to be produced' in the reaction 

sequence in hydrocarbon systems, its yield may be considered as a 

mirror of the overall reactivity of the system. 

Other systems 

The early investigations in recoil carbon chemistry were carried 

out in inorganic systems. 

Rowland and Libby (60) observed the products produced as a result 

12 11 11 
of the C(Y,n) G reaction in solid and liquid CO?. Carbon monoxide- C 

and carbon dioxide-^^C were the only products formed in significant 

yields. In the liquid sample 95-100^ of the radiocarbon was in the 

form of CO. In the solid phase approximately equal fractions of each 

product were observed. It was suggested that the solid phase system 

would confine the radicals generated along the recoil path Ion;; enoufjh 

for them to recombine, while in the liquid where the caging effect is 

less pronounced, the carbon could diffuse, out of the recoil track into 

a region of higher reaction probability with carbon dioxide molecules. 

Similar results were obtained for crystalline sodium bicarbonate and 

for an aqueous sodium bicarbonate solution. These last results were 

in conflict with the work of Edwards and McCallum (94), who studied 

both the CaCO^ and MaHCO^ systems. They observed very little carbon 

monoxide but did find significant yields of carbon dioxide, oxalic 

acid, glyoxylic acid and glycolic acid. They attributed the disagree-
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ment in results to the fact that Rowland and Libby had used sulfuric 

acid to liberate the gases and as a consequence considerable décompo­

sition of the acids had occurred. Further studies in similar systems 

indicated that the relative proportions of the radicals formed by 

carbon-ll were independent of the nature of the cation present and 

of the crystal structure (95). Crystal annealing effects were also 

observed. McCallum and Edwards (96) have also reported recoil carbon 

data for the solid sodium formate system, 

Dubrin, et al. (9?) and MacKay, et al. (98) reported results 

for the reaction of recoil carbon-ll with a number of rr-bonded 

inorganic molecules. Carbon monoxide-^^C was the only significant 

product to result from carbon reactions with O2, CO, CO2 and SO2. Carbon 

11 
monoxide- C was still the only product in liquid oxygen where there 

is no three-body restriction on COg formation, vûth N2, N2O and NO, 

both HCO and ^^CN were observed as major products. With NOg, ^^CO 

is again the major product. These results were interpreted in terras of 

an "end-on" attack at the oxygen or nitrogen atom which is in direct 

contrast to the "sideways rr-complex" mode demonstrated for ethylene. 

Molecular orbital arguments were also invoked in support of this 

proposal. Using neon to moderate the energy of the recoil carbon atom, 

they were able to demonstrate that these reactions would occur mth 

both hot and thermalized carbon atoms. The endoergic reaction in 

which carbon-ll reacts with to form ̂ ^CN was the only exception. 

Moll and Thonpson (99)» using photochemical decomposition of 

matrix-isolated carbon suboxide at 4,2®K as a source of carbon atoms, 

observed a number of the radical intermediates in the reactions of 
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carbon atoms with Ng, Hg and Dg. Their attempts to form methylene 

in spectroscopically observable quantities were unsuccessful but 

definite evidence for the NCN and CNN radical intermediates was 

observed. Contrary to earlier predictions (97,98) these results do 

indicate a possible 'Vr-bond" insertion mechanism in nitrogen. 

Recoil carbon has also been shown to react with N2-O2 mixtures 

to produce >90^ yields of carbon monoxide-^^C. The significance of 

this result in reference to the natural radiocarbon cycle has 

recently been discussed (100,101). 

The radiation modification of the primary reaction products in 

the recoil carbon-gaseous ammonia system has previously been mentioned. 

MacKay et al. (98) studied the ammonia system and observed very little 

product activity. They attributed this result to the trapping of the 

primary products (possibly HCN) on the reaction vessel walls. When 

the sample was exposed to a very high radiation dose, was 

observed as the major product. These results were in agreement with 

earlier work by Yang and Wolf (57). The most definitive study of this 

system has recently been presented by Cacace and Wolf (102). The 

observed reaction products were methane, methylamine, and methyl-

enimine. Methylenimine and part of the methylamine were a result of 

reactions with kinetically energetic carbon atoms but most of the 

methane resulted from a thermal process. The radiolytic reduction of 

methylenimine and methylamine to methane was demonstrated and no 

evidence for the formation of HCN or any derivative thereof was 

found. Competition studies with equimolar mixtures of ammonia and 

propane indicated a relatively low efficiency for the carbon atom 
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reaction with ammonia. For the pure system, irradiated at low conver­

sion in the solid and liquid phases, methylaitâne and methane were 

observed in yields of 74'^ and 8'J>, respectively. These results are 

nearly identical to those found by Yankwich and Vaughan (44) in the 

carbon-14 recoil study in crystalline ammonium bromide and may indicate 

a possible parallelism between the reactions in both systems, 

Cacace, Stoecklin and Wolf (103) examined the reactions of 

carbon-11 in methylamine. The results were in general agreement with 

what is known about the reactions of energetic carbon atoms with 

alkanes and ammonia, Acetonitrile, the only hot product observed 

(e.g. yield was independent of phase and scavenger) was proposed to be 

formed by decomposition of an excited ethyleneimine molecule since the 

activity was found to be equally distributed between the two carbon 

atoms. From the comparison of the acetylene and ethylene yields in 

the methylamine and ethane systems, it appears that the C-H bonds are 

much more reactive towards insertion reactions than are the N-K bonds. 

This selectivity is not apparent for the methylene insertion reaction 

since the ratio of the yields of dimethylamine and ethylamine in the 

scavenged condensed phase system appear to be in the ratio of what 

one should expect by indiscriminant methylene insertion reactions into 

the C-H and N-H bonds. 

Carbon recoil reactions in the acetamide system have been reported 

(48,51,104), Wolf et al, (48) have reported data on degradative 

studies of a number of product molecules. In all cases, considerable 

divergence from what one would expect from statistical insertion 

or replacement was observed. Similar results were obtained by 
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Diehm (104) who has made a much more comprehensive study of the product 

distribution. Dose studies were performed on a number of products, 

and significant radiation damage effects were shox^m to persist dovrn to 

10"^ eV/molecule or less. The acetamide molecule had a relative 

replacement probability for the carbonyl and methyl carbon atoms of 

about 1.9:1. These results indicate to this author that participation 

of the carbonyl group via the formation of a possible cyclic inter­

mediate may be responsible for the mixing and replacement ratios 

reported by both Diehm and Wolf. In any case, further study of this 

system or of similar systems will be required before an adequate 

interpretation of the data can be made. 

Ache and Wolf (66,105) recently reported results bearing on their 

study of carbon atom reactions in N2-H2 and N2-hydrocarbon systems. In 

the N2-H2 system, HCM and CH^ were the only products observed. In 

the N2-alkane systems, HCN (<50^ of the total ̂ ^C) was the only nitrogen 

containing compound observed in addition to the usual spectrum 

11 
characteristic of carbon atom-alkane interactions. The H CK was shown 

to be a product of a hot atom reaction in agreement with previously 

reported results (97,98). The addition of oxygen decreased the HCN 

yield owing to the competing reaction by oxygen for the hot carbon 

atoms. From the kinetic treatment of the data, the following hot atom 

reaction cross section ratios were obtained; *^CK(hot) ~ 

^CN(hot)/ ^ ̂C2H2(hot) from C^Hg/ ^G2H2(J:iot) 

„ = 1.31. The last ratio is nearly identical to what one 
from 02^6 . • 

would predict on the basis of a statistical insertion decomposition 

reaction. 
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MacKay and Wolfgang (23) have reported some data for ethylene oxide., 

11 11 
Significant yields of both acetylene- C and carbon monoxide- C were 

observed. Carbon monoxide was postulated to have resulted from an 

attack by a carbon atom at the oxygen unshared electron pairs vri.th sub­

sequent electronic rearrangement to form ethylene and carbon monoxide-^^C. 

Investigations have also been performed on the methanol system 

(52,106). The early work by Schrodt and libby (IO6) cannot be con­

sidered meaningful by present day standards since it involved a reactor 

irradiation of a mixed system of aniline and methanol and the product 

distribution was obtained by fractional distillation, Oae, Redvanly, 

and Wolf (52) have reported some of the results they have obtained in 

the KH^-CH^OH system. The yields of the C^-C^ alcohols were tabulated 

and degradative studies on the products ethanol and n-propanol were 

reported. Since some of their results have direct bearing on the current 

investigation, this work will be discussed later in greater detail. 

Thornuvl Carbon Chomirjtry 

Information relating to the reactions of thermal carbon atoms would 

be of considerable help in interpreting the results of recoil carbon 

studies. In recent years, such information has become available. 

Stief and De Carlo (10?) produced atomic carbon by photolysis of 

carbon suboxide and observed that in reactions with methane, both 

acetylene and ethylene were produced. The carbon atom was visualized 

as reacting with methane to form an excited C2% intermediate that 

could either collisionally deactivate to ethylene or lose hydrogen to 

form acetylene. 
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The reactions of carbon atoms produced by a carbon arc have been 

extensively studied by Skell and his co-workers (68-7?-, 108-110). In 

their experiments the carbon vapor was deposited on an inert paraffin 

surface at -196^0 giving as major constituents of the deposit, C-j 

find with H mil], amounts of C . JiVidonco for tho reactions of carbon 

atoms in various states of electronic excitation was obtained by varying 

the timing of depositions and introduction of the reactant. The half-

lives for the electronic transition C(^S) >C(^D) and C(^D) >C(^?) 

were estimated at 2 and 15 seconds, respectively (69). 

In reactions with olefins, C(^P) displays its reactivity through 

its filled and unfilled orbitals rather than through its half filled 

orbitals and reacts with conservation of spin angular momentum to form 

a triplet cyclopropylidene. The cyclopropylidene then reacts with 

another olifinic molecule to form a spiropentane by a non-stereospecific 

step. The C(^D) is observed to react with olefins by two stereospecific 

addition steps to form spiropentanes. The initial cyclopropylidene 

adduct formed by olefin reaction with C(^S) rapidly rearranges to an 

aliéné before addition of the second olefin can occur (72), 

The C(^S) has also been shown to undergo insertion reactions with 

the C-H bonds in saturated hydrocarbons. No isomerization to the 

Cn^l alkene was observed but intra- and intermolecular C-H insertion 

by the product carbene was noted. No evidence for C-H insertion by 

C(^P) or C(^D) was obtained. 

In reactions with chlorinated hydrocarbons, C-Cl insertion by 

C(^S) and C(^D) was noted (109). The C(^D) adduct preferentially 

rearranged to the corresponding alkene by methyl, chlorine atom or 
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hydrogen atom shift. The C(^S) adduct underwent intra- and inter-

molecular C-H or C-Cl reinsertion reactions to form cyclic and build-up 

products. 

Evidence for carbon atom reactions with hydroxyl, epoxi, alkozQ/'l, 

and carbonyl functional groups has recently been obtained (68,110,111). 

Dooxygonation with formation of carbon monoxide was observed for acoLono, 

motl\vlothy]. kotono, cyclopontanono, propylene oxide, diethyl oLhor /inci 

tetrahydrofuran. At the present time, it appears probable that C(^D) 

and C(^S) are the major reactants. No deoxygenation was observed to 

occur with simple alcohols and water but the alcohols do react with 

C(3p) to form dialkoxymethanes. Sprung, Winstein, and Idbby (112) have 

used a similar technique to study the reactions of deposited carbon 

with benzene, Cycloheptatriene and toluene were the only products 

identified and evidence for the formation of a large fraction of high 

boiling polymeric material was presented. 

Although the reactions of vapor-deposited carbon occurred in the 

solid phase at ~196®C and may involve intermediate complexes acting 

as carbon donors, qualitative simularities have been noted between 

this system and recoil carbon. Little or no acetylene or ethylene was 

produced in the carbon vapor studies and that which was observed was 

shovjn to have resulted from a precursor (111), In the recoil carbon 

system, acetylene is a major product and is believed to be a result 

of the "insertion-decomposition" mechanism previously discussed. 

The reactions of the primary adduct will depend upon its internal 

energy and spin state and upon the character and phase of the 

surrounding molecules. The effects of these factors have been exten­
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sively investigated by Wolfgang and his co-workers for the ethylene 

(67,113-115) and 2-butene (II6) systems. In a dilute solution of 

these reagents in a solid xenon matrix where thermalization of the 

carbon atom and de-excitation of the adduct are both efficient, the 

yields of the'fragmentation products (e.g. C2H2, C2%, etc.) were 

substantially reduced. Evidence was found to indicate that some of 

the cyclic adducts in the 2-butene system survive sufficiently long to 

react with a second 2-butene molecule to form spiro compounds. These 

results are in qualitative agreement with the carbon vapor studies on 

the same system. 

At the present time, it is very difficult to assess the significance 

of the carbon vapor studies in relation to the reactive properties one 

might expect from thermal carbon atoms produced in gaseous or condensed 

phase systems at or near ambient temperatures. 

Purpose of Investigation 

As is evidenced from this brief review, considerable progress has 

been made in the understanding of the mechanisms of the gas phase 

reactions of atomic carbon in simple hydrocarbon and inorganic systems. 

In recent years, these mechanisms have been applied to the condensed 

phase reactions of larger hydrocarbon molecules with considerable 

success. No information is as yet available concerning the reactions 

of atomic carbon with molecules containing the carbonyl, hydroxyl or 

alkoxyl functional groups. 

It is the purpose of this present investigation to: 

1. Obtain information relating to the overall reaction mech-
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anisiti for atomic carbon in low molecular weight alcohol systems, 

2. Obtain information concerning the structural dependence of 

the fragmentation modes for a number of target molecules containing 

carbonyl, hydroxyl and alkoxyl functional groups, 

3. Determine the yields of the observed products on an absolute 

basis, 

4. Assess the significance and magnitude of the radiation damage 

in these systems, and 

5« Determine whether insertion reactions similar to those 

postulated for C-H bonds in alkanes and N-H bonds in amines can also 

take place on 0-H bonds, and if so, to coiiTçiare the reactivities of 

the C-H and 0-H bonds towards these insertion reactions. 

The degree to which any of these objectives have been satisfied 

will be discussed in later sections of this dissertation. 



www.manaraa.com

26 

EXPERIMENTAL 

Reagents, Purification, and Sample Preparation 

Reagents 

Pertinent data concerning the source and initial purity of the 

reagents used in this study appears in Table 1. 

Table 1. Reagent source and purity data 

Compound Source and Description 
Purity 

(mole percent) 

Methanol 

Ethanol 

1-Propanol 

2-Propanol 

Methyl Formate 

Methyl Acetate 

Acetone 

Diethyl Ether 

Isopentane 

Fisher Scientific Company 
Fisher Certified Reagent {k-9J>6) 

Commercial Solvents Corporation 
Rossville Gold Shield Alcohol 

Fisher Scientific Company 
Fisher Certified Reagent (A-414) 

Fisher Scientific Company 
Fisher Certified Reagent (A-432) 

Eastman Organic Chemicals 
Spectro Grade (S 1227) 

Matheson Coleman & Bell 
Chromatoquality Reagent (CQ 2409) 

Matheson Coleman & Bell 
Chromatoquality Reagent (CQ 2953) 

Baker & Adamson 
Reagent Grade Code 1700 

Phillips Petroleum Company 
Research Grade 

99.9+ 

99.9+ 

not stated 

99+ 

not stated 

99.9 

99 

not stated 

99.99 
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Iodine and 2,2-diphenyl-l-picryhydrazl (DPPH) were used as radical 

'scavengers. The iodine, sublimed, 'Baker Analyzed' reagent, had a 

stated purity of 100.0 percent. The DPPH was obtained from Eastman 

Organic Chemical and used without further purification. The gases 

used as carriers and for product identification were all of research 

grade and were obtained from the Matheson Company, The other chemicals 

were obtained from a number of commercial sources and since these 

materials were only used as carriers or for product identification, they 

were considered to be sufficiently pure. 

Purification 

All of the materials studied, with the exception of the isopentane, 

were subjected to further purification. Because of the primary con­

sideration in this study, the overall product spectrum in the 

alcohol systems, these materials were extensively purified. Traces 

of aldehydes and ketones, normally found in alcohols, were removed by 

a procedure similar to that outlined by Baxendale and Mellows (117). 

In this procedure, 400-ml of the alcohol were refluxed with 2-g of 

2,4-dinitrophenylhydra%ine and 1-ml of concentrated HgSO^ for a period 

of 12 hours. The material was then rectified with retention of the 

central 200-ml fraction. A procedure outlined by Morton and Mark (118) 

and designed to accomplish similar results, proved to be unsuccessful 

when traces of furfural employed in the purification procedure were 

found in the ultraviolet spectrum of the rectified methanol. 

The alcohols were then treated to remove traces of water. The 

technique used for methanol was different from that employed in the 
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other alcohol systems. The methanol was dried by a procedure outlined 

by Fieser (119)» In this procedure, water is removed by reaction -with 

magnesium methoxide. The reaction being: 

MgCOCKoïg + ZHgO r-o Mg(0H)2& + ZCHgOH 

Since the magnesium hydroxide is insoluble in methanol, the reaction 

proceeds to completion. In this procedure 2-g of Mg (J.T. Baker, 

purified) were dissolved in 200-ral of methanol. The mixture was then 

refluxed for 3-6 hours and rectified ivith the retention of the second 

50-ml fraction. The collected fraction was then manually transferred 

to the vacuum line for degassing and sample preparation. This process 

reduced the water content of methanol to below 0.05/^. 

The other alcohols and acetone were dried using the same apparatus 

but -with a substantially modified distillation column, pictured in 

detail in Figure 1. 

The ability of molecular sieves to remove moisture from a 

variety of gases has been known for many years and recently increasing 

use has been made of them for the drying of organic liquids (120). 

In this apparatus, Molecular Sieve hk (Linde Co., Division of Union 

Carbide) was used as the drying agent, the principle employed being 

similar to that of a Soxhlet extractor. The water in the organic 

liquid, which has some vapor pressure over the solution is swept up 

with the organic solvent through the fractionating column. The vapors 

are then condensed and passed down through the bed of molecular sieve 

finally returning to the vaporization flask via the side flow tube. 

Eiy refluxing the solution for several hours, the water content of 

these solvents can be substantially reduced. Using a similar 
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Figure 1. Molecular sieve reflux extractor 
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technique, Arthur, et al. (121) demonstrated that the concentration 

of water in 2-propanol and 1-butanol could be reduced below the detection 

limit of the Karl Fisher technique («0.0005^). Hersh (120), using a 

considerably less efficient molecular sieve drying process, reduced the 

water content of ethanol, 1-propanol and acetone to about 10 p.p.m. 

Methanol, possibly because of its small molecular size, is not 

efficiently dried using the molecular sieve technique. 

A 200-ml saitple of ethanol, 1-propanol, 2-propanol or acetone was 

refluxed in this apparatus for 12 hours and then fractionated with 

retention of the second ^0-ml fraction. This fraction was manually 

transferred to the vacuum line for degassing and sanple preparation. 

Diethyl ether, acetone, methyl formate, and methyl acetate were 

subjected to only a minor purification involving a siirçile fractionation 

step. Usually 250-ml of the material were refluxed for several hours 

before fractionation and only the central 100-ml retained for the 

drying step. The acetone was dried by the molecular sieve procedure 

outlined for the alcohols. The other solvents were dried using 

non-indicating Brierite in the vaporization flask of the distillation 

apparatus. The ability of Drierite to efficiently reduce the water 

content of many organic solvents has recently been discussed by 

Hammond (122), After refluxing for several hours, the solvent was 

rectified ;d.th collection of the central 30-40 ml fraction. This 

fraction was then transferred to the vacuum line for degassing and 

sample preparation. Before the drying step, the complete distilla­

tion system was flushed for several hours with dry air and was pro­

tected from atmospheric moisture during the refluxing and distillation 
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steps by a combination Drierite - molecular sieve drying tube. The 

sample purity was checked with the gas chromatograph using a sensitive 

thermal conductivity scale setting. In all systems, the results indi­

cated an absence of detectable impurities. 

Sample preparation 

The unscavenged samples were usually prepared by a vacuum distilla­

tion technique. The apparatus is shoivn in Figure 2. The dried solvent 

was placed on the reservoir side of the system and frozen %d.th liquid 

nitrogen. The stopcock above the reservoir was then opened and the 

space above the frozen solvent evacuated to a pressure of about one 

micron. The stop cock was closed, the liquid nitrogen removed, and the 

solvent allowed to molt. This procedure was repeated at least three 

times or until the vacuum gauge indicated an absence of dissolved gases. 

The sample bulblet, see Figure 2, was fabricated from Pyrex and had a 

diameter of 8.6 ± 0.1 mm. The bottom of these bulblets were slightly 

flattened to increase the sample activation during irradiation. The 

bulblet was iriounted on the sample side of the distillation apparatus 

and evacuated. The stopcock to the vacuum line was closed and the 

two stopcocks above the reservoir and the sample were opened. The 

distillation was effected by cooling the sample bulblet vâth a dry ice-

acetone mixture. The stopcock to the reservoir was closed and the 

sample was frozen in liquid nitrogen. The vacuum line stopcock was 

opened, the space above the bulblet evacuated, and the sample was 

sealed. 

The scavenged samples were prepared by a pipeting technique. 
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Figure 2. Vacuum distillation apparatus and sairiple bulb 
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The scavenged solutions were made by weighing the iodine or DPPH to the 

nearest 0.1 mg and dissolving it in a known volume of the vacuum 

distilled solvent. The samples were prepared by pipeting this mixture 

into the sample bulblets. These samples were vacuum-degassed by the 

freeze-thaw technique and sealed. The iodine was observed to be 

completely soluble in all of the solvents over the range of iodine 

scavenger concentrations studied. In the acetone system iodine was 

observed to react, and only a few runs performed immediately after 

sample preparation gave results indicative of the -scavenged systems. 

DPPH was found to be relatively insoluble in methanol; a solution pre-

-3 
pared to 1x10 mole fraction still contained some undissolved DPPH. 

The isopentane was used without further purification, the samples 

being prepared by the pipeting technique. 

Experimental Apparatus 

The separations of the radioactive products were performed on an 

F&M Research Chromatograph, Model-810, DR-12. This instrument has 

been modified to facilitate the analysis required in this research. 

A description of the major modifications has been outlined by Jewett 

(85) and consequently only a brief discussion of these alterations 

is presented. 

The instrument is commercially equipped mth both a gas sampling 

valve and syringe injection port. To facilitate the on-column injection 

of a large sample, a sample breaker was installed between the syringe 

injection port and the column connection. The breaker was insulated 

from the oven and heated with a 250 watt heater controlled by one of 
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the chromatograph electronic circuits. The injection configuration 

allowed the simultaneous operation of the three injection systems as 

well as independent operation of each. This condition is useful when 

gaseous or liquid carriers are added for column reactivity studies 

or for product identification. 

The chromatograph is equipped with dual columns and dual thermal 

conductivity and hydrogen flame detectors. The hydrogen flame 

detection system wag disconnected and one of the columns bypassed 

directly to the reference side of the thermal conductivity cell. 

The other column, to which the injection system is connected, was 

used for the product separations. A description of the columns and 

the column materials used in this study will be presented later. 

The detection system for the radioactive effluent, shovrn in 

Figure 3s consisted of a 3.O x 3.0 inch Nal(Tl) side-hole crystal 

(Isotope, Inc.). The effluent from the chromatograph was directed 

through this 5/8 inch hole by a 8-mm quartz tube wound with iron 

resistance wire. The wound tube was coated with Sauereisen to insure 

intimate contact between the wire and the glass and to prevent shorting 

of the electrical circuit. This tube could be heated by application 

of voltage from a variable transformer. The crystal which is very 

sensitive to thermal shock was protected by a silvered air condenser 

placed between the heated counting tube and the crystal wall. With 

this configuration, the counting tube could be safely heated to 

l60®C. The crystal and photomultiplier are incased in a 1«25 inch 

cylindrical lead shield and surrounded by a 2 inch thick lead cave. 

This was done to reduce the level of the background radiation. 
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Figure 3. Diagraw of radioactive effluent detector system. 
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The output of the photomultiplier is connected to a Hewlett-

Packard hodel 5201 L Sealer-Timer Pulse Height Analyzer. This system 

permits the continuous recording of the counts accurnulated in consecu­

tive time intervals. In this study these are 5.0 and 10.0 seconds. 

This analyzer was set to accept pulses only in the region of 0.4 to 

1.2 MeV, in order to include the positron O.5II MeV annihilation 

radiation and the 1.022 MeV sum peak. By using the analyzer in this 

mode, a reduction in background and a substantial increase in the signal 

to noise ratio were achieved. 

Other equipment, see Figure 4, included a Hewlett-Packard Model 

555IA High Voltage Supply, a Hewlett-Packard Model 562A Digital 

Recorder and a RIDL Model 35-9 Bate Meter. The digital recorder 

prints out the recorded activity accumulated by the analyzer during 

each preset time interval. The information transfer from the scaler 

to the printer is very rapid, 3x10"^ seconds, and assures negligible 

count losses during the transfer operation. The output from the 

analyzer is used in conduction with the rate meter to drive one of 

the pens on the Honeywell ELectroniK I6 Two-Pen Strip Chart Recorder. 

The other pen is connected to the output of the thermal conductivity 

cell control module. The thermal conductivity unit was used to 

dotormine the retention times for known compounds injected into the 

chromatograph and to facilitate the identification of unknown radio­

active products by carrier techniques. The latter procedure is 

required since in a typical irradiation only about 10 mole of any one 

product is produced. 

The activity induced in the sample during bombardment x-jas measured 



www.manaraa.com

37 

HIGH 
VOLTAGE 
SUPPLY 

DIGITAL 
RECORDER 

TWO-PEN 
STRIP CHART 

RECORDER 

CHR0k4AT0GRAPH 

THE 
CONDUCTIVITY 

DETECTOR 

SCALER -TIMER 
PULSE HEIGHT 

ANALYZER 

Figure 4. Block diagram of analysis system 
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on a monitor counter wliich was a 2.5 x 2.5 cm Nal(Tl) crystal connected 

to a Nuclear Chicago Model 186 Scaler. The crystal was shielded v.dth 

lead to reduce background. The samples were counted under conditions 

of constant geometry at a time after irradiation sufficient to insure 

negligible contribution from interfering activity (vide infra). The 

measured activity was used in product yield calculations and as a 

monitor of the dose and dose rate to which the sample was exposed 

(vide infra). 

The columns used to effect the product separations were fabricated 

from 8 mm Pyrex tubing and ranged in length from 6 to 35 feet. The 

solid supports were obtained from the F & M Scientific Division of 

Hewlett-Packard and from Analabs, Inc, The materials used for the 

solid-gas phase chromatography were obtained from Matheson Coleman 

& Bell and the Fisher Scientific Company. The liquid phases were 

purchased from F & M Scientific Division of Hewlett-Packard, K & K 

Laboratories, Inc., Eastman Organic Chemicals, and Carbide and Carbon 

Chemicals Corporation. The columns were prepared by dissolving a 

knovm amount of the liquid phase in a suitable solvent, mixing it i-ri-th 

an appropriate amount of solid support, and evaporating the solvent 

using a flash evaporator, A listing of the columns used in this study 

along with the source of the preparation materials appears in the 

Appendix. 

The early part of this study was performed using less sophisticated 

chromatographic and detection equipment. A description of the basic 

equipment has been presented by De Vries and Voigt (123). This 

equipment was extensively modified for use in this investigation. 
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The major modifications included a radical redesign of the sample in­

jection, detection and data read-out systems. The data read-out system 

is identical to that outlined in a recent thesis by Matkovich (124). A 

variety of detectors were employed. Initially the detection system was 

similar to that outlined by Da Vries and Voigt (123) and was considered 

satisfactory for gaseous product analysis. The higher boiling products 

required a heated detection system and use was made of a flow-through 

proportional counter. The proportional counter was found to be much 

more efficient than the Mal(Tl) crystal in the detection of the carbon-11 

activity but suffered from fluctuations in sensitivity. The experimental 

problems encountered in the attempt to stabilize the proportional 

counter soon outweighed the efficiency advantage and use of the system 

was discontinued. The latter part of the work mth the older chro-

matograph was performed using the 3 inch Nal(Tl) crystal outlined 

previously. The results obtained in all systems were identical and 

indicated that the formula developed by Wolfgang and Rowland (125) 

to correlate the observed counts under an elution peak to the activity 

in the peak for a flow proportional counter was also applicable in 

the Nal(Tl) flow systems. 

Calculation of Product Yields 

In a typical experiment, the sample-containing bulblet was 

irradiated for a predetermined time and returned to the laboratory 

for product- analysis. After a period of time sufficient to allow 

a major fraction of the interfering activity to decay, the activity 

in the sample blub was monitored. The product activity was then 
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analyzed using the gas chromtograph to perform the product separation 

The chromatograph effluent was monitored by the flow detection system 

discussed previously. The output of the detection system was recorded 

simultaneously on both a strip chart and a digital recorder. Each 

radioactive product produces a nearly Gaussian peak on the strip chart 

recorder as it passes through the detection system. Tho effluent is 

then vented into a hood via a soap-film flow meter. The flow rate is 

normally monitored during the peak elution. 

An expression relating the activity in the peak to the total 

number of counts observed under a peak has been given by Wolfgang and 

Rowland (125), 

This expression was developed for a flow proportional counter 

but has been found to be applicable for the detection systems used in 

this investigation. 

The yield of any product is equal to the product's activity 

divided by the total sample activity and may be expressed by the 

following relationship. 

where 

A = (C-b) (f.rO/V 

A = activity in peak (counts/min), 

C = total counts observed under peak, 

b = background counts under peak, 

f.r. = flow rate (ml/min), and 

V = sensitive volu^ie of counting chamber (ml). 

Yield (^) = 
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where = decay constant for carbon-11, 

tp = time after bombardment that product activity 

is measured, 

M.A. = activity of sainplo as measured by the monitor 

counter, 

t^ = time after bombardment that sample activity is 

monitored, and 

c.f. = calibration factor relating the two detection 

systems. 

The calibration factor incorporates the proportionality constants 

relating to the efficiency of each detection system and also takes 

into account the sensitive volume of the flow system. The determina­

tion of the calibration factor is the subject of a later section. 

Interpretation and Representation of Data 

The identification of the products in the alcohol systems proved 

to be a significant part of this investigation. Since only about 10 

mole of any one product is produced during an irradiation, identifica­

tion could only be achieved by comparison of retention times during 

carrier addition experiments. Most of the products were verified on 

two or more columns. A small number of the higher boiling products in 

both methanol and ethanol were only identified by retention on one 

column. These identifications seemed reasonable in the light of the 

oxpoctcd. chomiKbry. Only t-ho;;o unknown product.'; who:.;o yioltl:; woro 

determined and are useful in experimental data interpretation are 

reported. 
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In the analysis of the data, the product yields were plotted as 

a function of dose. The results which appeared to be linear were 

analyzed mth the computer by the method of least squares. For those 

distributions for which a linear line could not be justified, a curve 

through the data points was drawn by visual inspection. 

In mo;rt cases the data arc reported to threo irlf/nll'icrxnt fji'Uru::: 

and the reported error roprusonts the titantiard daviation of .'in irulividua], 

determination. In the few cases where the curves were not linear and 

had to be extrapolated to the dose region reported, the yield was 

reported to the nearest tenth of a percent and an approximation sign 

placed in front of the value. In other cases where data were insuf­

ficient to justify calculating a standard deviation of the value was 

just reported to the nearest tenth of a percent without indicating; the 

error. 

A summary of the experimental results will be presented in the 

Results and Discussion Section, The graphical representation of the 

product dose dependencies are not presented because of their limited 

value and voluminous nature. 
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RESULTS AND DISCUSSION 

Absolute Yield Calibration 

The knowledge of the absolute radiochemical product yield is of 

value when interpreting experimental data. It allows the comparison 

of data between laboratories and may be of aid in the future development 

of a quantitative mechanistic theory of recoil carbon chemistry. It is 

also useful in accessing the magnitude and significance of the 

unobserved or unidentified products, the knowledge of which may bo very 

helpful in the analysis of experimental results. 

If the absolute radiochemical yield of any one product is known 

for one compound, the calibration factor of the detection system can 

be calculated by using a rearranged form of Equation 1, 

(C-b)(e^l^P)(f.r.) 
C.I. = 

(Yield 

Knowledge of the calibration factor allows the calculation of the 

absolute yields of products in other systems. 

In this laboratory, a number of attempts have been made in recent 

years to determine the calibration factor and the corresponding 

ab.';oluto product yiold;;. 

Clark (126) has previously determined an absolute radiochemical 

yield of 17.8^ for acetylene in methylcyclopentane. In a later study, 

Jewett (85) reported a value of l6.4'^ for the same determination. He 

also determined a value of 21.?^ for the acetylene yield in isopentane, 

a yield which appeared to be independent of dose. This value was used for 

calibrating the detection system in early experiments of the current work. 
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As further oxporimonta], data becainc available, it war; apparcnL th 

this factor was not correct for the syctom at pro;;cnt, since when it w 

used the total product yield in the methanol system was over lOO/s. 

Also evidence was obtained that the acetylene yield was dependent in 

dose. Hence, it was decided to redetermine the calibration factor and 

to determine the acetylene yield dose dependence in isopentane. 

A diagram of the essential features of the experimental eq'oipment 

is presented in Figure 5» 

The general outline of the experiment follows. A sample bulblet 

filled viith isopentane was irradiated at the synchrotron. After the 

usual waiting.period, the carbon-11 activity in the sample bulb was 

monitored. The sample was introduced into the sample breaker, heated 

above its boiling point, and broken. The vaporized sample was swept 

into the CuO combustion furnace where it was burned to carbon dioxide 

and water. The carbon dioxide passed through the chromatograph column 

to the flow detection system where its activity was measured. The 

activity in the elution peak was recorded in 30 second intervals and 

the flow rate was measured throughout the experiments 

The expansion chamber and packed chromatograph column were used 

only to allow the system sufficient time to equilibrate before the 

active carbon dioxide reached the counting tube. Unless this was 

done, the pressure surge during the initial combustion was of such a 

magnitude that extreme flow rate fluctuations occurred during the 

early periods of carbon dioxide elution. 

To verify that complete combustion had occurred, weighed inactive 

samples of the n-octane were combusted in the same apparatus. After 
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Figure 5« Experimental arrangement for the combustion determination 
of the equipment calibration factor in absolute product 
yield studies 
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removing the water, the carbon dio:d.de produced was absorbed on Ascarite 

and complete recovery was obtained. 

The resultant radiochromatogram consisted of a broad distribution 

with an extended tail. To obtain the calibration factor the peak was 

broken up into 30 second intervals and integrated by the computer using 

the following equation, 

The experimental results appear in Table 2. 

Table 2. Results of combustion determination of equipment calibration 

i=l 

factor 

Sample 
Designation 

Calibration 
Factor 

CB2 2.760 

CB] 2.764 

CB4 2.783 

CB6 2.773 

ycVi 

CE8 2.807 

Average 2.775 a = ±0.018 
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The calibration factor is a function of the individual detection 

system and requires redetermination if any modification of the equip­

ment occurs. Because of the extensive equipment setup required to do 

this type of experiment, it became necessary to use the measured cali­

bration factor immediately to determine the absolute product yields 

for a number of the products in isopentane» By doing so, the yield values 

could be used as a secondary standard in the redetermination of the 

calibration factor. 

A summary of the results of these experiments appears in Table 3» 

Table 3» Yields of radioactive products as a result of the 
reaction in isopentane, unscavenged dose dependence 

Yield, Percent 
Product 

CH4 j.30i0.3 5.6l±0.3 

1.45±0.17 l.fOiO.l? 

C2H11, 10,1 iOe2 lO.l ±0»4 

17.3 ±0.2 16.4 ±0.4 

Total 34.2 ±0.2 33.8 ±0.4 

Dose (eV/molecule) a - 0.020, b - O.O8O 

Since this system has been previously studied by Jewett (85) 5  no 

interpretation of the mechanisms for product formation ivill be pre­

sented. The only important new result is the definite evidence for 
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dose dependence of the acetylene yield. 

Dose and Dose Rate Calcula'cions 

In integrated dose rate at the probe position in the electron 

synchrotron has been estimated previously (127) as approximately 10^^ 

eV/g min from the observed disappearance of iodine in a 2,2-dirnethyi-

butane solution, Clark and Voigt (93) determined the radiation dose 

rate by two methods, Fricke and cobalt glass dosimetry, and obtained 

similar results. They reported a value of approximately 3x10^^ eV/g 

min for a beam of ''average" intensity. These determinations were made 

at an electron energy of 4? MeV. Since in this work an electron energy 

of 70 MeV was used and the dose values reported by previous investiga­

tors (93,127) could not be correlated to the dose monitor used in this 

study, the integrated dose rate was redetermined and the measured values 

correlated to the dose rate monitor, K^/ty. 

The use of the higher energy beam resulted in a substantial 

increase in the number of photons of sufficient energy to cause the 

reaction, alj.oi,-dng a shorter bombardment period for the production of 

similar quantities of carbon-11. A disadvantage is that the dose rate 

may also increase as a result of the increased efficiency of brems-

strahlung production at the higher electron energy. Clark and Voigt 

(93) stated that their experimental results at 47 and 70 KeV were 

identical. This may indicate that the dose rate per carbon-11 produced 

does not change substantially in the region from 47-70 MeV or that the 

systems investigated were relatively insensitive to dose or dose rate 

changes. 
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The number of radioactive carbon-11 nuclei, N^, at any time, t, 

after the end of an irradiation can be expressed by the following 

relationship 

^1 

whore = rate of production of carbon-11 nuclei by tho 

^^C(Y,n)^^C reaction, 

A.^ = decay constant of carbon-11, and 

t^ = duration of bombardment. 

The dose delived to the sample during such a bombardment is 

proportional to the total number of nuclei transformed. 

Dose = kP^ty 

By substitution of Equation 2 into Equation 3> the dose may be 

expressed by 

Dose = t^ 

(l-er^]tb) 

The carbon-ll activity in the sample, is given by --

The dose may be expressed as 

kAi eAl^t} Dose = ̂ 1® 

k'(l-e 

In the various systems investigated, the carbon atom densities,(3 

o 22 
in carbon atoms per cm/, varied from 1,49 to 2,46x10 . Since the 

observed activity is directly dependent upon the number of nuclei in 

the beam path, the proportionality constant, k/k', depends on the 

system and can be replaced by k"/|pc & more- universal expression. 
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The dose may then be expressed as; 

Dose = k'ip (4) 

where Kp is defined by 

X]_t 

& = :aol7 (5) 

(1-e 'I't) 

and the dose rate by 

Dose Rate = k" (N^/t^) 

The previously developed arguments are based on the assumption that 

the activity observed is a result of a single nuclear reaction, 

12 11 
C(Y,n) C. In the systems studied, this is not realized since other 

nuclear reactions contribute to the observed sample activity. A brief 

study was undertaken to estimate the significance of their contribution. 

The reactions that contribute are two photonuclear reactions on oxygen-l6, 

^^0(Y,n)^^0 and ^^0(Y,"t.)^%, which produce interfering nuclides with 

half lives of 2.07 and 9.96 minutes, respectively, and the 

11 
reaction which adds a small amount to the C produced from carbon. 

Like ^^0, and are positron emitters. Since the activity 

monitor is based upon the positron activity of the sample, discrimina­

tion by the detection system is impossible. 

If we consider first the activity induced in the liquid sample, 

the error encountered by using the observed sample activity as a dose 

monitor may be evaluated. The relationship of the total sample 

12 21 
activity, Aj,, to that produced by the C(Y»n) C reaction, A2, may be 

expressed by the following equation. 
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Ap/AjL = 1.00 — 

16./ \11, whero P^' is the production rate of the reaction " 0(Y,c<n) " C, P and 

P and P^ and are the production rates and decay constants of 

13 
and N, respectively, and f^/f^ is the atomic ratio of oxygen to carbon 

in the irradiated compound. 

The values for the ratios of production of the various isotopes 

were determined by analysis of the decay spectra of synchrotron 

irradiated H_0, HUBO., Li^CO^ and C^HrCH(OH)CO?H. SMASH, a docay J) J) ^ ^ 

resolution computer program, developed by Korthoven and Carlson (128) 

was used to evaluate the relative contributions of the induced activities. 

From these results, the production ratios were determined to be; 

P^'/P^ = 0.026±0.006, Pg/Pi = 1.0=0.2, and P /P^ = O.OljiO.OO]. 

Calculated values for the ratio Ap/A^ for samples irradiated for 4.00 

minutes and counted 23.5 minutes after bombardment are given in Table 4. 

These data indicate that the induced activity from the photonuclear 

reactions on oxygen-l6 results in a relatively minor contribution to the 

total activity, the error being most significant for methanol and methyl 

formate and least significant for diethyl ether. 

The error resulting from the activity induced by photonuclear 

reactions in the glass of the sample bulb are not easy to evaluate. 
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Table 4. A^/A^ values^ 

System Aj/AI 

Methanol, Methyl Formate 1.042 

Ethanol 1.021 

1- and 2-Propanol, Acetone 1.014 

Methyl Acetate 1.028 

Diethyl Ether 1.010 

%.0 nânute bombardment, activity monitored 23.5 rd.nutes after end 
of bombardment. 

Although the attempt was made to fabricate the bulbs :d.th identical 

shapes, variations in diameter, concentricity, wall thickness, and 

bottom flattening did occur and as a result, the proportion of the 

activity that was contributed by the glass could vary considerably 

between rans. From computer analysis of the decay of the activity 

produced during a four minute bombardment of isopentane, the activity 

in the glass was estimated to contribute about 2$ to the total activity 

when measured at the usual monitoring time* From this result, the 

errors in the other systems were estimated to range from 2-4^» i'ri.th the 

maxiraum error again occurring in methanol where the carbon atom density 

is the least. From these results, it was concluded that the total 

activity induced in the sample could be used as a dose and dose rate 

monitor. 

The evaluation of the proportionality constant, k", in Equation 4 

was accomplished using cobalt glass dosimetry which makes use of the 
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darkening of glass by radiation, Kreidl and Blair (129-131) described 

a form of cobalt glass useful in high-level dosimetry. This glass 

(F-0620) is available commercially in the form of 15 x 6 mm rectangular 

plates, 1.5 mm in thickness, from Bausch and Lomb Optical Company, It 
3 6 is useful over a range in dose from 5x10 to 10 rads and in dose rate 

from 5x10"^ to 5x10 rads/min (132), The dose range can be extended to 
n 

10' rads with reduced precision but no information is available on 

extending the upper limit of the range in dose rate. Samples of the 

cobalt glass were exposed for varying times to the cobalt-60 source of 

the I.S.U. Veterinary Medical Research Institute and the subsequent 

optical density changes were measured at 500 m;& with a Beckman Model DU 

Spectronhotomet er. The changes in optical density were plotted versus 

the dose as determined by the Fricke dosimeter.^ A dose range of 
46 8x10 to 2x10 rads was covered and the shape of the resultant curve 

was in agreement with published results (130,131). Sample bulbs filled 

with methanol, ethanol, methyl formate, isopentane and benzene were 

irradiated simultaneously with samples of cobalt glass at the synchro­

tron. The dose was determined from the change in optical density of 
_ 11 

the glass and a value for Nj was calculated from the observed C 

activity (Equation 5)» The results of these experiments appear in 

Table 5. 

In the methyl formate and alcohol systems, the contribution to the 

total activity produced by the photonuclear reactions on oxygen is 

^Dr. Joseph Picken, Jr., Veterinary Medical Research Institute, 
Iowa State University of Science and Technology, Ames, Iowa. Calibra­
tion of cobalt-60 source by Fricke dosimetry. Private Communication, 
1967. 
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Table 5» Results of cobalt glass dosimetry: relation of dose to lip 

Dose /Dip Number of 
System (rads) Determinations 

Methanol 7*18±0.46 xlO^ 7 

Ethanol 6,89±0.38 xlO^ 6 

lospentane 8,36±0.13 xlO^ 3 

Benzene 8,60±0,34 xlO^ 3 

Methyl Formate 7*46x10^ 1 

reflected in the lower values of the Dose /Np ratio. Since the precise 

evaluation of these sources of errors is difficult, as outlined earlier, 

and since the precision of the measurements on these systems is believed 

to be much better than the absolute accuracy, the average of this ratio 

for all systems is probably the best relation available. Hence, in all 

of the calculations involving the effect of dose on the yields, the value 

(7.70i0»75) X 10^ rads/ Np was used for k". Equation 4 then becomes 

Dose (eV/gm) = (4.8±0.5)xl0^9 

For a five minute irradiation of methanol with a beam of average 

intensity, representative values for % and dose (in eV/molecule) are 

5.0 and 1.3x10"^, respectively. 

The instantaneous dose rate in these systems, is considerably 

higher. The electron synchrotron is a pulsed machine with a cycle time 

of 1.7x10" seconds and pulse duration time of approximately 4-xlO 

seconds. The carbon-11 is produced only during the pulse and as a 

consequence finds itself in a radiation field considerably more intense 
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than would be indicated by the integrated dose and dose rate values. 

De Vries and Voigt (123) estimated the thermalization time for a 1.0 MeV 
-9 carbon-11 at about 10 seconds. Thus it is very likely that all of the 

carbon-11 produced in one burst has reacted before the next burst occurs. 

Very little information is available concerning the time dependence 

of the radical concentration during and after the electron burst, 

Sutton and Rotblat (133) estimated the minimum lifetime of radicals 

produced during such a burst at 5x10""^ second with an upper lifetime 

limit of 2,5x10"^ second. It is then very possible that the radical 

concentration remains relatively high during the thermalization time 

for the carbon-11 but does drop to zero before the next burst occurs. 

In any study of the product yield dose rate or dose dependence, 

one would ideally like to fix the total dose delivered to the sample 

and vary the doso rate or at constant dose rate vary the total doso. 

The electron synchrotron used in this study has neither capability at 

this time. The approach has been to study the dose dependence of the 

product yields while keeping the dose rate as constant as possible. 

The value of the dose rate is usually relatively constant during any 

one bombardment but may vary between bombardments. Although it is 

apparent from the analysis of the data that the total dose is the dominant 

factor, the dose rate dependence may be somewhat reflected in the 

experimental scatter of the dose dependent products. 

Production of Atomic Carbon 

Free atoms of ^C are produced by the nuclear reaction, ^^C(Y,n)^^C, 

using the bremsstrahlung beam from a General Electric Model M 70 MeV 
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electron synchrotron operating at a maximum energy of 70 MeV. The 

sample bulb is mounted at the end of a specially constructed Synthane 

sample holder and positioned within the acceleration chamber of the 

synchrotron. The probe arrangement and sample positioning have been 

illustrated by De Vries and Voigt (123). The irradiation periods ranged 

from two to twenty minutes, their duration depending upon the operational 

characteristics of the synchrotron and the requirements of the experiment. 

The instrumental techniques employed for these irradiations have been 

discussed by Hammer and Bureau (134-136). 

Using the techniques of least structure analysis of the yield 

curves, Cook, et al, (137) have measured the photoneutron cross section 

for the production of carbon-11 from the reaction threshold, 18,7 MeV, 

to 65 MeV, The giant resonance was resolved into a predominantly 

triplet structure with peaks at 22,1, 22,75, and 23.6 MeV, 

Neglecting the momentum brought into the system by the incoming 

photon, the recoil energy imparted to the carbon atom as a result of 

the nuclear reaction can be calculated from the following expression; 

2% = (Ey + Q) ""n 
^UC + % 

11 where = C recoil energy, 

Ey = energy of photon, 

Q = energy of reaction (eg, -18,7 MeV), 

m^ = mass of neutron and 
1 n 

mii^ = mass of C, 

The absorption of a 22.1 MeV photon would impart a recoil energy of 

0,28 MeV to the carbon-11. The absorption of higher energy photons 
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would correspondingly produce recoiling carbon of higher energy. Since 

the photoneutron cross section decreases rapidly above 28 MeV as does 

the intensity of the bremsstrahlung beam, the fraction of carbon-11 atoms 

produced with recoil energies in excess of 1 MeV is small. The average 

recoil energy will be on the order of 0,5 MeV, 

Energy Loss Mechanisms - Charge and Spin State Upon Reaction 

The impulse imparted to the carbon atom as a result of the nuclear 

reaction is of such a large magnitude and short duration when compared 

with bond energies and vibrational frequencies that the atom is ejected 

like a projectile from the vicinity of the parent molecule. This atom 

is initially charged but rapidly achieves electronic equilibrium with 

the medium by successive charge transfer collisions. As a general rule, 

those electrons whose Bohr orbital velocities are less than the velocity 

of the recoiling atom are expected to be lost. Since the recoil 

g 
velocity of a 0,5 MeV carbon-11 atom is approximately 3x10 cm/sec and 

the Bohr orbital velocity of the least bound electron as calculated 

g 
from the first ionization potential is about 2x10 cm/sec, it is 

expected that this electron will be lost and that the recoiling carbon 

atom will be at least singly charged, Harvey (138) has presented an 

approximate formula for calculating the charge of a recoiling atom. 

The value obtained from this calculation is in agreement with that 

predicted above, ̂  

For velocities greater than about 2x10^ cm/sec the recoiling ion 

loses energy mainly by electronic excitation and ionization of the 

stopping medium. As the velocity decreases to the order of the 
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velocity of the valence electrons of the stopping material, the 

mechanism of energy loss essentially becomes one of elastic and inelastic 

collisions (i.e. without causing ionization) between the recoil ion or 

atom and the atoms of the stopping material. 

The range of a recoiling ion is very roughly proportional to its 

initial energy. De Vries and Voigt (123) using equations developed by 

Bohr (139) have calculated a range of approximately 8x10 ̂  cm for a 

1,0 MeV carbon-11 atom in a number of condensed phase systems. 

Definite information concerning the final charge or electronic 

excitation of the recoil species when it reaches the region of chemical 

reactivity (<50 eV) is lacking. Atomic carbon has a ground state 

and two low lying electronic excited states, ^D and which are 1,3 

and 2,7 eV, respectively, above the ground state (140), The application 

of Massey's near-adibatic hypothesis (l4l) to obtain information con­

cerning the final charge and electronic state of the recoil carbon has 

lead Wolfgang (3^) and Mesich (84) to predict that the carbon atom 

reaches the region of chemical interest as a neutral species in one 

of its lower lying electronic states (3p^ or ^s). A similar 

calculation performed upon the systems under current investigation 

confirm their findings but as of the present time there appears to be 

no definite chemical evidence to either contradict or support these 

predictions. 

Introduction to Experimental Results 

In interpreting the recoil carbon data, one must consider how the 

accompanying radiation field affects the final observed product 
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distribution, Radiolysis of the target material will produce radicals 

and molecular species that may be reactive towards the recoil products 

or their thermal radical intermediates, A number of experimental 

techniques are available that may be useful in assessing the significance 

of these effects. 

One of these techniques involves the study of the product distri­

bution as a function of total dose. The establishing of relationships 

between dose dependent products may be useful in the interpretation 

of reaction mechanisms. 

The other technique is the addition of radical scavengers to the 

system. Two commonly used radical scavengers in liquid systems are 

iodine and DPPH, If the concentration of the scavenger is low, it will 

not interfer with hot reaction processes but will scavenge the thermal 

radical intermediates. The scavenger also has the effect of reducing 

the concentration of radiation produced radicals and as a consequence, 

radiation modification of the products is substantially reduced. 

Considerable care must be taken in the interpretation of the 

effects of radical scavengers. Their use will generally give informa­

tion on which products are a result of thermal processes and may also 

help to indicate those products resulting from hot atom processes. 

Different scavengers may give different results under identical 

radiation conditions since they may vary considerably in their effec­

tiveness to react with particular radicals. In some very favorable 

cases this specificity can be exploited. To do this requires some 

knowledge of the relative rate constants of radical-scavenger reactions 

and this knowledge is not usually available. Another difficulty arises 
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if the products resulting from radical scavenging are themselves 

reactive towards the solvent. In this case, a number of unexpected 

products may be observed. 

Another very important tool in the understanding of the radiation 

effects is the knowledge of the radiation chemistry of the system 

studied. The writer is very fortunate in this respect since in recent 

years a considerable amount of literature has been published on this 

subject. This knowledge will generally yield a reasonably accurate 

picture of the expected reactive radical or ion distribution which may 

be useful in the understanding of some of the reaction sequences. 

In this investigation, a study has been made of the distribution 

of all observable products in methanol and ethanol as a function of 

total dose in both the scavenged and unscavenged systems. In methanol, 

both iodine and DPPH were used as radical scavengers although only a 

limited amount of data was obtained in the DPPH scavenged system. A 

study was also performed on the effects of the iodine scavenger con­

centration on the yields of and products in diethyl ether. A 

limited amount of similar data has also been obtained for methanol. 

The yields of the fragmentation products and the dependence of 

these yields on dose and scavenger were also determined in the systems; 

l-propanol, 2-propanol, acetone, methyl acetate, methyl formate and 

diethyl ether. 

Recoil Chemistry of Atomic Carbon in Methanol 

Radiation chemistry of methanol 

As a background to the interpretation of the methano1-carbon-ll 

recoil data, a brief description of the radiation chemistry of this 
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system will be presented. 

An indication of the ions most likely to be of concern can be 

obtained from the mass spectrum of electron bombarded methanol vapor 

(142). The most important ions and their relative abundances are; 

CHgOH^ (100), CH^OIT*' (68), CHO+ (52), (23), and C0+ (15). These 

are produced by the following reactions: 

CHgOH + e" > CHgOH^ + H* + Ze" 

> CH3OH+ + 2e-

> CHO"*" + Hg + H" + 2e-

> + HO* + 2e~, and 

> C0+ + 2H2 + 2e-

In the liquid, the relative yields of CHgOH^ and are 

expected to be higher because the solvent cage effect mil reduce the 

loss of H2 from CH^OH^ and the losses of HO* and 2H2 from CH^OH"^ (143). 

These ions can participate in ion-molecule reactions, the most 

probable being (143); 

CHgOH^ + CH3OH > CH3OH2+ + HCHO (6) 

CH.OH+ + CH3OH > CH3OH2+ + *CH20H (CH3O') (7) 

CHO"*" + CH3OH > CH3OH2+ + CO (8) 

> CH2OH+ + HCHO (9) 

> CH^"*" + CO + HgO (10) 

CH3*'' + CH3OH > CH20H*^ + CH^, and (11) 

C0+ + CH3OH > CH3OH+ + CO (12) 

Theard and Burton (l44) studied reaction ? by accelerating 

partially deuterated methanol molecules in a mass spectrometer. Their 

results indicated that in the condensed system CH^O* should be the 
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favored product. Evidence for the production of the methoxy radical has 

also been obtained by Ekstrom and Garnett (1^5) in their study of the 

radiolysis of a binary mixture of methanol and benzene. Wilmenius and 

lindholm (143) found that reactions 8, 9, and 10 occurred with about 

equal probability. 

The can be neutralized by reaction with solvated electrons. 

The expected reactions are (11?); 

CH^OHg"*" + e-(solv) > CH^OH + H' (hot) 

> CH^O" + H2, and 

> CHo" 4- H2O 

The overall results of these reactions are the production of 

radicals and molecular products. The radicals may then undergo a 

number of radical-molecule reactions, the most probable ones being; 

H* (hot) or H* + CHoOH > 'CHgOH + H2 

, CH^O* + CH OH > 'CHgOH + CH3OH 

CH^' + CH^OH > 'CHgOH + C% 

•OH + CH3OH > "CHgOH + H2O, and 

2 'CHgOH > (CH20H)2 

In the iodine scavenged system, this reaction sequence is sub­

stantially modified. Meshitsuka and Burton (146) have studied the 

radiolysis of the iodine scavenged methanol system. The changes in 

the radiolysis product yields were attributed to the scavenging of 

both radicale and riolvfitod olectronc by iodino, Thomas, ot al. (147) 

have recently determined a rate constant of 5x10^^^ M"^sec"^ for the 

reaction of I2 with a hydrated electron. The rate constant in 

methanol is not expected to be significantly different. The 
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will be more than competitive with CH^OHg* for the solvated electron 

because of its much higher concentration (^10 \) and the very high 

rate constant for the reaction. The ion-molecule reactions (Equations 

6-12) should not be significantly different in the scavenged systems 

since most of these reactions occur rapidly within the spur. 

h * «"(soiv) > IhT — > ̂  * I- (13) 

CH^OHg'*' + 15 > CH3OH + HI + 1% (14) 

H. + > HI + I. (15) 

CH^O- + Ig > CH OI + I* (16) 

CH3OI + CH3OH > (CH^ÏgO + HIO (17) 

CHg. + > CH3I + I" • (18) 

•OH + Ig > HIO + I- (19) 

•CHpOH + Ig > CH2(0H)I (20) 

CHgOOH)! + 2CH3OH > (CH30)2CH2 + HgO + HI, and (21) 

21. > Ig (22) 

Iodine atoms may also react directly with the radicals. The de­

composition of the transient species [ig]" to I^ and I* is only 

speculative and is based upon the observation of Grossweiner and 

Matheson (148) of the reaction, 21^ >1^ + I~. 

From this brief introduction, it is evident that in the unscavenged 

system the radicals 'CHgOH, "H, and ^7 play & role in the 

observed recoil carbon chemistry. The other radicals and the CH3OH2*'" 

molecular ion will only have a minor effect. Experimental support for 

this conclusion will be presented. 

In the iodine scavenged methanol system, the contributions of these 

radicals and molecular ions are substantially reduced due to the 
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reactions represented by Equations 13-22. The iodine also reacts with 

the thermal radicals containing carbon-11 to produce iodides and 

intermediates which undergo further reactions with the solvent, 

(e.g. Equations 17 and 21). 

No information is available concerning the effect of DPPH on 

methanol radiolysis although some inferences can be made by the analysis 

of the carbon-11 recoil data. 

Recoil carbon chemistrr in methanol 

From Table 6, it can be seen that the recoil carbon-11 atom 

stabilizes in a variety of products and that the yields of some of 

these products are dose dependent. This product spectrum can be 

reasonably well explained on the basis of the insertion reactions of 

C, CH, and CHp and the reactions of the products or radical inter­

mediates with the radiation produced radicals or added scavengers. In 

attempting to account for these data a large number of possible reaction 

paths of carbon atoms with methanol were considered. Most of these 

proved to be inconsistent with some of the data and were discarded. 

This discussion will be restricted to those mechanisms that appear to 

be in reasonable accord with these results and those of other related 

studies. A brief outline of these mechanisms is presented in Figures 

6-8, These figures are not intended to represent all the possible 

reaction- pathways, but only to sei*ve as a general guideline for the 

discussion. 

Carbon atom reactions The initial insertion of the recoil 

carbon-11 atom into the C-H and 0-H bonds of methanol will produce 
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Table 6. Yields of radioactive products as a result of the ̂ ^C(Y,n)^^C 
reaction in methanol 

Product 

Yields, 
Unscavenged 

a b 

Percent^ 
• • Xy = : 

2 
a 

1.01x10"^ 

b 

Carbon Monoxide 15.6 ±1.9 9.5±1.6 24.2 ±0.3 24.9 60.3 

Carbon Dioxide - - 0.21±0.03 0.1360.03 

Methane 3.97±0.2 3.9760.2 2.47±0.09 2.66±0.09 

Ethane 0.91±0.15 1.07±0.15 0.60±0,11 0.80±0.11 

h'lli.ylono 9.U9±0.4 8.44±0.3 9.o-j±o.'j 

Acetylene 14.9 ±0.6 13.8 ±0.9 15.4 ±0.7 16.1 ±0.7 

Propylene 0.4l±0.03 0.27±0.03 0.4l±0.05 0.25±0.05 

Dimethyl Ether 4.64±0.14 4.5160.2 4.08±0.2 4.1260.2 

Methyl Ethyl Ether 0.45±0.03 0.5060.03 0.3760.07 0.4l±0.07 

Methyl Vinyl Ether 0.3960.04 0.3060.04 0.42±0.3 0.4760.3 

Dimethoxymethane 4.53±0.2 4,08±0.2 9.5 60.4 10.6 ±0.2 

1,1-Dimethoxyethane - - 3.5^0.8 2.5360.8 

Acetaldehyde ~3.9 0.8560.2 - t 

Methyl Formate t t 0.6560.09 0.6060.09 

Methyl Acetate 3.57±0.13 3.0560.13 - -

Ethanol 8.29±0.6 8.88±0.6 4.9760.3 5.66±0.3 

1-Propanol 1.47±0.2 1.7860.2 0.3960.09 0.33±0.09 

Allyl Alcohol 1.87±0.2 1.7660.2 1.0560.13 1.21±0.13 

^Yield in percent of total produced 
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Table 6. (Continued) 

Yields, Percent^ 
Unscavenged Xj = l.OlxlO"-' 

2 
Product a b a b 

2-Metlioxyethanol 3.68±0.4 3.28±0.4 0.99±0.13 1.33±0.13 

Ethanediol 0,95±0»2 1.11±0,2 

1.2-Propanediol 5.73±0.05 8.50±1.7 

1.3-Propanediol 1.14±0,4 1,32±0,4 

Methyl Iodide - - 3.38±0.2 3.72=0.2 

Yxayl Iodide - - 2.10±0.09 2.67±0.09 

Unknown 4.0 1,15±0,3 

Unknown - - 9» 3 5«3 

90.2 79.6 92.5 92.8 

Dose (eV/molecule) a-0,009, b-O.036 

the excited adducts B and Ç (see Figure 6). These adducts may fragment 

or may cqllisionally deactivate to the carbene. Rearrangement processes 

are not excluded and will be discussed later. 

An indication of the expected chemistry of these carbenes may be 

obtained from the recent studies of the reactions of dimethoxycarbene 

by Hoffmann and Haeuser (149). In this study they observed that in a 

methanol solution, dimethoxycarbene reacted to form methyl orthoformate. 
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figure 6. Chemistry of recoil carbon in methanol, resellers of C. 
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No evidence for products consistent with insertion into the C-H or C-0 

bond was obtained. Tracer studies by Franzen and Fikentscher (150) 

have sho-wn that methylene vdll not insert into the C-0 bond of diethyl 

ether. Evidence in support of the relative inertness of the C-0 bond 

has also been obtained by Oae, Redvanly, and Wolf (52) from recoil 

carbon-l4 studies in methanol. The production of ethanol could 

conceivably result from the insertion of labelled methylene (see Figure 8) 

into either the C-0 or C-H bond, Degr'adative studies on the ethanol 

showed that 95*1^ of the carbon-14 activity to be in the methyl group 

and indicated a distinct preference for C-H bond insertion. In the 

reactions of vapor deposited carbon with methanol only one product, 

dimethoxymethane, was observed (68,110,111), If dimethoxymethane is 

produced by a double insertion mechanism, these results indicate that 

the thermal carbon atom has a distinct preference for 0-H insertion as 

has also the resultant methoxycarbene. On the basis of these data 

and upon the basis of the analysis of the results in this study, the 

insertion of C, CH, CH^ and other carbenes into the C-0 bond does not 

presently appear to be a major mechanistic pathway. These results 

also tend to indicate a preference for 0-H bond insertion by the 

substituted methylenes. For this reason we have considered only the 

reinsertion reaction of the collisionally deactivated carbenes, B 

11 
and Ç, into the 0-H bond of methanol to form 2-methoxyethanol- C 

11 
and dimethoxymethane- C, respectively. 

The formation of ketene and acetaldehyde via excited adduct A 

is only speculation. Both of these products could conceivably 

result from the fragmentation and deexcitation of B especially if B 
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is formed by the pathway outlined below. 

+ CH.OH > )cHOH > %ICH0H 

> [H2C=CH0H]* • • (23) 

This sequence has been proposed by Wolf (32) as a possible alterna­

tive to methyne insertion-decomposition or the methyne abstraction 

reaction for the formation of methylene. It may also be a possible 

alternative to ethylene formation in saturated hydrocarbons. This point 

will be discussed later in further detail. One can only speculate as 

to the nature of adduct A. An attack of the carbon atom on the C-0 bond 

may result in an excited intermediate that will decay to acetaldehyde 

or ketene. 

+ CH3OH 

rllp 

CH^-OH -> CHp=^C=0 + (24) 

A similar intermediate to the formation of acetonitrile-^^C in 

methylamine has been proposed by Cacace, et al. (IO3). 

Up to this time we have assumed that methyl acetate (the product of 

the reaction of ketene with methanol) and acetaldehyde have the same 

precursor. This may not be so. Degradative studies on both acetaldehyde 

and methyl acetate should provide some interesting clues to help unravel 

this problem. If the distribution of carbon-11 in the methyl and carbonyl 

groups are similar for each product one may argue for a common precur­

sor, If specific labelling is found, then a possible differentiation 

between B and the intermediate in Equation 24 may be possible. In 

either case degradative studies would help. 
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11 11 Both intermediates B and Ç may fragment to CH. Methyne- C 

may also result from a hydrogen abstraction process, but at the present 

time there appears to be no way to distinguish between these two paths. 

The excited complex B may also fragment to acetylene or to an 

excited vinyl radical. These predictions are consistent with the 

"insertion-decomposition" mechanism first proposed by MacKay and 

Wolfgang (6l) and discussed in detail in the introduction. Within 

experimental error, the acetylene-^^C yield is independent of dose and 

added scavenger. The scavenger independence is in agreement with a 

rapid unimolecular decomposition reaction not involving a radical 

intermediate. 

The excited vinyl radical may undergo rapid radical-molecule 

reactions with the solvent to form propyl en e-^'^C, methyl vinyl 

ether-^^C and allyl alcohol-^^C. The apparent scavenger independence of 

the yields of propylene-^^C and methylvinyl ether-^^C rules out a 

scavengable radical intermediate in their production and supports the 

postulate of a rapid reaction of an excited C2 fragment with the 

solvent. The choice of the vinyl radical as the product precursor 

is based upon the sinçilicity of the reaction. In each case, the re­

action involves only one leaving group, H* or "OH. With other less 

saturated C2 fragments,extensive rearrangements are required and the 

possibility of radical intermediates exists. This of course does not 

rule such fragments out completely. In any case, the yields of these 

products are very low and the mechanism for their production a minor 

one. 

The collisionally deactivated vinyl radical can react with the 
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radiation produced radicals or abstract hydrogen from methanol. Since 

the ethylene-^^C yield does not change substantially upon addition of 

iodine scavenger, the abstraction and hydrogen radical reactions are 

not the major mechanisms for ethylene production. 

In the iodine scavenged system, the vinyl radical will react 

preferentially with iodine to from vinyl iodide-^^C, The addition of 

11 
scavenger reduces the yield of allyl alcohol- C substantially. Within 

11 
experimental error, the yield of vinyl iodide- C (+2.1^) is exactly 

compensated for by the reduction in the ethylene-^^C (-1.4$) and allyl 

alcohol-^^C (-0.8^) and lends support for the reaction sequence 

presented. 

Carbon monoxide-^^C is produced in a substantial yield and the 

mechanism for its production is of primary concern in this study. 

For this reason, the carbon monoxide-^^C yield for a number of systems 

has been systematically investigated, A summary of this investigation 

along with some of the conclusions that have been made will be the 

topic of a lator r:oction. 'i'ho prosont discussion will bo limited to 

the chemistry observed in methanol, 

11 
In the unscavenged system, the yield of CO is found to be 

11 
highly dose dependent as are the yields of acetaldehyde- C and 

11 11 
1,2-propanediol- C, Carbon dioxide- C also fits into this group 

for reasons that will become apparent during this discussion. Since 

these dose dependencies are believed to result from a common precursor 

these four products will be discussed together. The common precursor 

is believed to be the solvated electron. Hart, et al, (151»152) 
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have reported the rate constants for the reactions of hydrated electrons 

with CO, CO2 and CH^C*^- H to be approximately 10^, 7.7x10^, and 

5.4x10^ M ^ sec respectively. These rate constants are not expected 

to be significantly different for the solvated electron in methanol. 

From the investigations of Holian, et al. (153) of the reactions 

of hydrated electrons with carbon monoxide in a 10"^ M methanol solution, 

a reasonable prediction as to the expected reactions in pure methanol 

may be made. The following reactions are believed to occur; 

IICO 4. e"(go2v) > (25) 

^^-00" + 'CHgOH > CHgOH^CO" 

CHgOH^^CO" 4- > CH OH^CHO + CH3OH 

The reaction sequence expected for carbon dioxide-^^C is (15^); 

4. (26) 

'CHgOH : > CHgOH^COg" 

4- CH^OHg"  ̂ > CHgOH^^COgH 4 CH.OE 

The products expected from these reactions, glycolaldehyde and 

glycolic acid cannot be determined under the conditions involved in 

this experiment so that direct evidence is not available to confirm 

these reaction sequences. 

Indirect evidence is available which tonds to support this roasonin^. 

Tho addition of scavenger quantities of iodine is expected to efficiently 

roitiovo tho ,'jolvated ol.octrons (k^, r.oc ^ (14'/) ) 
. U ] «f- X o 

so that reactions 25 and 2.6 will not occur. In the scavenged system, 

11 n 
the yields of both CO and COg are shown to undergo substantial 

increases. The lack of ^^C02 in non-scavenged methanol can then be 

attributed to the scavenging reactions by the solvated electrons. 
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Further support for these proposals may be obtained from the 

analysis of the acetaldehyde reaction sequences. The expected reactions 

are; 

4O _ 
CHjC-H + e (goiy) > CHjCHU 

CĤ CHO" 4. "CHgOH > CĤ CHO'CHgOH 

CHgCHO'CHgOH 4" CĤ 0H2"*' > CH3CHOHCH2OH 4- CH3OK 

The determination of the product from this sequence of reactions, 

1,2-propanediol, shows that a definite relationship exists between the 

yields of these two products. Within experimental error, the decrease 

in acetaldehyde-^^C (-3.0'^) is compensated for by the increase in the 

11 
yield of 1,2-propanediol- C (4-2.8^). Additional support for this inter­

relationship was obtained from the results of an experiment in which 

carrier quantities of acetaldehyde were added to the methanol sample 

before irradiation. The carrier acetaldehyde served to protect the 

11 • 11 
acetaldehyde- C from reduction. The yield of acetaldehyde- C was up by 

11 
>5.7^ while that of 1,2-propanediol- C was reduced by a corresponding 

amount (6.0^). These results tend to confirm the explanations proposed 

to account for the dose dependencies observed for the four products, ^^CO, 

11 11 
1^CÛ2, acetaldehyde- C and 1,2-propanediol- C. 

In the low dose system, the addition of iodine scavenger reduces 

11 . 11 • 
the yields of acetaldehyde- C and 1,2-propanediol- C to zero. An 

unknown product appears with a yield slightly less than the correspond­

is 11 
ing reduction of acetaldehyde- C and 1,2-propanediol- C. This product 

is believed to result from the reactions of acetaldehyde or its precursor 

;\fith iodine, possibly under the influence of the irradiation field. 

This hypothesis may be tested by addition of carrier quantities of 
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acetaldehyde to the methanol solution along with scavenger quantities of 

iodine tagged with iodine-131» If this reaction proposal is correct, 

one would expect to observe a radioactive iodine containing product with 

identical retention times as the unknown. Since macroscopic quantities 

may be produced, a chemical analysis of the product may be possible. 

The fact that the yield of the unknown product is less than the 
11 11 reduction in yield of acetaldehyde- C and 1,2-propanediol- C may 

be just experimental error or may indicate that other reaction pathways 

are possible for the production of 1,2-piropanediol-^C (see Figure ?), 

llCH^CHOH + •CHgOH > 

Upon the addition of iodine scavenger, the following sequence of 

reactions is expected to occur (155»156); 

llcHjCHOH + Ig ^ ̂^CH^CHCOH)! + !• 

^CH^CH(0H)I + CH^OH > ^^CH^CHIOCH^ + HgO 

llcH^CHIOCHj + CH3OH > + HI 
11 The product, 1,1-dimethoxyethane- C is also observed in the DPPH 

scavenged system and a similar sequence of reactions can be postulated. 

In the DPPH scavenged methanol system acetaldehyde-^^C and methyl 

acetate-^^C are observed in yields similar to those in the unscavenged 

system. These facts are consistent with the hypothesis of a non­

radical precursor for these products. Ketene-^^C will not react with 

DPPH whereas in the iodine scavenged system, the reaction to form 

methyl iodoacetate in Figure 6 may be expected to occur. The fact 

that the acetylene-^^C and carbon monoxide-^^C yields are higher (see 

Table 7) in the DPPH scavenged system may indicate that DPPH is an 
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Table 7« Scavenger dependence of gaseous product yields in methanol 

Product CO C% CgHg 

X(Scavenger) 

0.00 15.0±1,9 3.97±0.2 0,92±0.15 9.85±0.4 14.9±0.6 

I,0l3d0"3(l2) 24.2±0.3 2.48±0.09 0.6l±0.11 8.46i0.3 15.4±0.7 

2.263d0"^(l2) 23.6t0.8 2.0860.17 0,50±0.06 7.23^0.2 14.^0.4 

Saturated (DPPH) 25.4t0,5 3.02±0.2 0.9060.05 9.66±0,4 l6.1±0.4 

Dose (eV/molecule) - 0.010 

efficient solvated electron and hydrogen atom scavenger. 

Reaction of the methvne radical Insertion of the methyne-^^C 

radical into both the C-H and 0-H bonds is expected. The resultant 

excited adducts may coUisionally deactivate or fragment to methylene-^C 
11 and ethylene- C (see Figure 7)« 

11 The production of ethylene- C has been discussed in the intro­

duction, Although the methyne radical appears to be the logical precursor, 

definite experimental evidence is lacking. Double tracer studies do 

allow some conclusions to be made, Dubrin, et al, (75) irradiated 

equal molar mixtures of CgHg - ^2^6 observed that the deuterated 

ethylene-^^C's (C2H4, C2H3D, C2HD^, ^20^^,) were produced in equal amounts, 
J 

These results are consistent with three possible mechanisms for 

production of ethylene. 
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1 + CH.CH. > 5v-CHCH. > ^^CtL=ÔH + 
J J H ^ j 

^^CH2=CH + CH^CH^ > ^^CH2=CH2 + CH^CH^' 

2 lie + CHjCHj > [H^^C-CHgCH^]* > H11Ô=CH2 + 'CH^ 

H^^C=CHg + CH^CH^ > 11CH2=CH2 + CH^CHg" 

2 + CH.̂ CH > [l̂ CUgCĤ CĤ ]* > + -CĤ  

Kroiii scavenger experiments in a number of systems, it appears 

that if mechanisms 1 or 2 are valid, the vinyl radical is very excited 

and reacts rapidly with the substrate before it can deactivate and be 

scavenged. It is more likely that mechanism 3 is the primary path for 

ethylene production and that the observed scavengeable ethylene results 

from mechanisms 1 or 2, 

It is very difficult to distinguish between mechanisms 1 and 2. 

Some indication of the importance of the attack steps may be obtained 

11 
from the study of the propylene- C produced during irradiations of 

ethane (75). In this study, equal molar mixtures of CLH^ and 

were irradiated. The results of the analysis indicated that extensive 

mixing of one hydrogen had occurred (C^H^/C^H^D = C^D^/C-^D^H 1.3) • 

If deexcitation of the intermediate in mechanism 1 to prôpylehe occurred 

as the primary pathway for propylene production, this mixing should not 

be observed. If these results are also valid in the methanol system, 

then the mechanism outlined as a possibility in Equation 23 may be 

only of minor importance and the cyclic excited intermediate (Equation 24) 

the primary pathtvay. 

The possibility of fragmentation of the excited adducts to 
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11 n 
methylene- C has previously been discussed. Methylene- C may also 

result from hydrogen abstraction reactions or from decomposition of the 

transition state proposed in Equation 23» At the present time the 

experimental evidence require to make this differentiation is lacking. 

Deôxoltation of û (Figure 7) may produce two types of ethanol-^C 

radicals; the more stable one being the radical with the oc-hydrogen 

removed. Both of these radicals are unable to abstract hydrogen from 

the solvent and consequently stabilize as products by the radical-

radical reactions shown in Figure 7. The reactions of F have already 

been discussed. The reaction of G with the methanol radical to produce 

1,3-propanediol-^^C is the major mechanism for production of this product. 

The possibility of double insertion into the C-H bonds by carbon-11 is 

excluded on the basis of the disappearance of this product in an iodine 

or DPPH scavenged solutions. 

11 The production of 2-iodoethanol- C, in an Ig scavenged system 

could not be verified. Various atteirpts to elute this product were 

unsuccessful, possibly as a result of its thermal instability (157). 

The CH^OCHg' radical, H in Figure ? is unable to abstract hydrogen 

from the solvent and will form stable products by radical-radical 

reactions. A major fraction of the 2-methoxyethano1-^^C is believed 

to be formed in this manner. The unscavenged fraction my have resulted 

from the double insertion reaction proposed earlier and shown in Figure 6. 

In the iodine scavengod system, this radical will undergo the réactions 

shown. The instability of the «-iodoethers has already been pointed out. 

This is believed to be the major reaction which causes the rather 
U substantial increase in the yield of dimethoxymethane- C in the iodine 
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scavenged system# This increase is not observed in the DPPH scavenged 

system possibly because the CH^OCHgDPPH-^^C adduct is less labile than 

the iodoether. 

Another pathway to dimethoxyraethane-^^C exists in the iodine 

scavenged system. The small yield of ethanediol-^^C is believed to 

result from the following reaction; 

^^CHgOH + •CH2OH > (llcHgOHjg 

The mechanism for the production of the methyl alcohol-^C radical is 

not as yet understood. The addition of iodine scavenger reduces the 

yield of ethanediol-^^C to zero. The reaction sequence is believed to 

be the following; 

^^CHgOH + I2 > ̂ CHgCOH)! + I' 

4- CH^OH > CH^O^CH^I + HgO 

The iodo ether is expected to react as shown in Figure 7 to form 

dimethoxymethan e-^^C. 
11 The increased yield of dimethoxymet han e- C (+5«0^) is within 

11 
experimental error of the decrease in the sum of dimethyl ether- C 

(-0,65s), 2-methoxyethanol-^^C (-2.7^), and ethanediol-^^C (-1,0^), 

11 Reactions of the methylene radical Methylene- C can react by 

insertion into either the 0-H or C-H bonds of methanol (see Figure 8). 

The excited adducts, I and J, can fragment or collisionally deactivate 

11 11 . to the stable molecules, ethanol- C and diethyl ether- C, respectively. 

The formation of methylethyl ether-^^C is believed to be the result of 

the reaction of an excited ethyl-^^CI radical with the solvent. The yield 

of this product is independent of the addition of scavenger and indicates 

that the production process does not involve thermally equilibrated 
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radicals. The unscavenged 1-propanol-^^C and ethane-^^C may be a result 

of a similar sequence of reactions involving a hot ethyl-^C radical 

reaction with the solvent. 

The thermal ethyl-^^C radical can pick up or abstract hydrogen from 

the solvent to form ethane- C. It may also react with the methanol 

radical to form 1-propanol-^^C although as will be explained later this 

mochaninm is not believod to be important» 

Evidence in support of a entity participation in this last 

reaction has been presented by Oae, et al, (52), Degradative studies 
14 

of the 1-propanol- C produced during reactor irradiations of a 

methanol-ammonia solution indicated that $8^ of the activity was located 

in the 2 and 3 positions. The distribution is shown below; 

CH l-CH OH 
2 

42.1# 55.8# 2.1# 

Their assumption that labelled ethylene might be the reactive 

14 
intermediate was tested by irradiation of a mixture of ethylene- C 

and methanol (no ammonia present) under the same reactor conditions as 

were used for the recoil experiment. They observed that 41,5^ of the 

ethylene-^^C reacted with methanol to form labelled propanol and that 

the distribution of activity was equally divided between the 2 and 3 

positions. They proposed the following mechanisms to account for these 

results. 

H. + 

+ 'CHgOH > ̂ ^CHjCHgCHgOH 

or or ^^02%"*" 
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or + CHgOH > > ^^CH.CHgCHgOH 

These proposals appear to be reasonable. The absence of detectable quanti 

ties of ethyl iodide-^^C in this investigation indicates that the major 

source of ethyl-^^C radicals is not via the fragmentation of I since this 

process would not be e:xpected to depend upon the presence of scavenger. 

On the basis of the yields of ethanol-^^C and dimethyl ether-^^C 

in the scavenged system, an estimation of the relative insertion-

stabilization probabilities of the methylene-^^C radical into the 0-H 

and C-H bonds of methanol can be made. The scavenged system was chosen 

in order to reduce the contribution to the product yields by the radical 

reactions (see Figure 8), The ratio of the 0-H and C-H insertion-

stabilization probability, on a per bond basis, is 2,5 and indicates that 

either the 0-H bond in methanol is much more reactive than is the C-H 

bond or that the 0-H insertion adduct stabilizes more readily than does 

the C-H insertion adduct. A combination of both of these factors is 

also possible. A higher reactivity of the 0-H bond would be in agree­

ment with the previously discussed higher 0-H insertion probabilities 

observed for the substituted carbenes. 

Reactions of the methyl radicals The reactions of methyl-^^C 

radical are illustrated in Figure 8. In the unscavenged system, the 

methyl radical can abstract hydrogen from the solvent or react with the 

radiation produced radicals. The addition of iodine scavenger reduces 

11 11 
the yield of both ethanol- C(-3»3^) and methane- C (-1.5?^) and is 

consistent with the proposed reaction scheme. The fact that the yield 

of methyl iodide-^^C is less than this reduction confirms that other 
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radical reaction pathways are available for ethanol production (e.g. 

radicals F and G). In fact, from these results one can estimate that 

about 1.4^ of the ethanol in the unscavenged system results from the 

radical reactions•of F and G. 

The unscavenged methane-^^C may result from hydrogen abstraction 

11 
reactions by excited or energetic methyl- C radicals. 

Recoil Chemistry of Atomic Carbon in Ethanol 

The results of the recoil carbon-11 studies in ethanol are pre­

sented in Table 8. As was observed in the methanol system, the 

recoiling carbon atom stabilizes in a large variety of products. The 

product spectrum is much more complex than that for methanol and the 

number of unidentified or possibly identified products has increased 

sharply. This increased product complexity is due to the increasing 

number of possible reaction paths. In this system, a complete 

description of the reaction mechanisms will not be attempted, for much 

of it would of necessity be a repeat of that presented in the previous 

section for methanol. Instead, the discussion will be restricted to 

those aspects which are unique to ethanol or which lend support to 

the proposals presented for methanol. 

The radiolysis of ethanol is very similar in its main features 

to that of methanol (158)» The radicals, CH^ÔHOH and H* play a dominant 

role in the production of the major radiolysis products. The reaction 

sequence is a& follows; 

CH^CHgOH CH3ÔHOH + H. 

H' + CH^CHgOH > CH3CHOH + Hg 
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12 11 Table 8. Vi^jelds of radioactive products as a resuit of the C(Y,n) G 
reaction in ethanol 

Product 
Yields, 

Unscavenged 
Percent^ 

Xl. = 
2 

9.7x10-3 

a b a b 

Carbon Monoxide 14.5 ±0.4 14.6 ±0.4 16.9 60.6 17.6 60.6 

Methane 4.25t0.2 4.3860.2 2.7460.08 2.6160.08 

Ethane 1.04±0.08 0.9160.08 0.5760.03 0.8160.03 

Ethylene 7.7660.4 6.2760.4 7.1860,12 7.4060.12 

Acetylene 12.8 ±0.4 10.6 60.4 13.8 60.3 13.7 60.3 

Propane 0.40±0.05 0.3860.05 0.2660.01 0.2460.01 

Propylene 3.84±0,15 3.5560.15 3.4860.10 3.5460.10 

Aliéné 0.8060.10 0.7060.10 0.7260.10 0.4660.10 

Propyne 2.8260.16 2.7560.16 2.9960.14 2.8460.14 

Methyl Ethyl Ether 2.8660.15 2.8460.15 2.5060.18 2.7760.18 

Methyl Vinyl Ether 0.3960.05 0.3360.05 ~o ,3  

Diethyl Ethor o.5i±o.lo 0.4360.10 0.33±0.08 0.2860.08 

Di othoxymet hane 2.0460.17 2.0760.17 6.6760.5 7.2660.5 

1,1-Di ethoxy ethane 
and/or 

Ethyl Propionate 
- - 1.7060.8 4.9260.4 

Acetaldehyde 2.4860.4 2.5060.4 - 0.5260.2 

Propionald ehyde 1.2360.4 1.1160.4 - t 

(Ethyl Formate)? t t 1.3460.3 0.7560.3 

^Yields in percent of total produced 
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Table 8. (Continued) 

Product 
Yields, 

Unscavenged 
Percent^ 

9.7x10-3 

a b a b 

Ê thyl Acetate 1.8960.10 1.7760.10 - 0.8 

Acetone 2.3960.3 2.6360.3 2.8760.2 3.0660.2 

2-Propanol 5.76±0.2 5.0860.2 3.0160.17 3.0260.17 

1-Propanol 4.54±0.08 5.0160.08 4.0160.09 3.7660.09 

Allyl Alcohol 5.0 ±0.3 3.5 60.3 4.4160.40 3,9360.40 

2-Propyne-l-ol 1.2560.2 O.9I6O.2 1.22±0.04 1.2860.04 

1-Butanol 0.9560.13 0.8660.13 0.4860.05 0.3960.05 

2-Butanol 1.8861.0 2.2261.0 0.5360.16 0.6060.16 

l-Butene-3-ol 2.3360.4 2.566O.4 0.6060.04 0.5860.04 

1-Pentanol 0.6460.08 0.4760.08 t t 

3-Ebhoxy-l-Propanol 0.7560.14 0.5160.14 - -

CH3I - - 3.2960.2 3.4160.2 

% - - 'vO.7 

Total 85.1 78.9 82.6 87.2 

Dose (eV/inolecule) a - 0.010, b - 0.050 

2 CH^CHOH > CH^CH(OH)CH(OH)CH3 

> CH^CHgOH + CH^CHO 

The addition of iodine scavenger is expected to greatly reduce the 

radical concentration of H» and CH^CHOH. 
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One of the most important differences between this system and the 

methanol system is the dose independence of both the carbon monoxide-^^C 

and acetaldehyde-^^C yield. The difference may be a result of the high 

G value for the radio lytic production of acetaldehyde (o.g. G = 3.14) (159). 

ïho acetaldehyde which is produced in macroscopic quantities by radiolysis 

will, as a result of its high rate constant for reaction with solvatcsd 

electrons (152), act as an efficient electron scavenger. Another 

possible reason for the apparent absence of solvated electrons has been 

discussed by Hayon and Weiss (159), In their paper, they indicated 

that the positive and negative polarons (e.g. CH^CHgOH* and the solvated 

electron) may not be as stable as those produced in water or methanol 

because of the lower solvent polarity and the polarons greater 

structural complexity. Whatever the actual reason is, it is apparent 

from the ethanol data that effects attributed to the solvated electrons 

in the methanol system were not observed in ethanol. 

11 11 
The yields of both ethylene- C and acetylene- C show a definite 

dose dopendonoe as do the yields of a number of the unsaturated 

products in this system. This dose dependence very likely arises as a 

result of reduction by radiolytically produced hydrogen atoms or 

radicals. The resultant radical can stabilize in a variety of products 

by further radical reactions which accounts for the inability to 

establish a direct relationship between any of the dose dependent 

products. 

11 
The product diethoxymethane- C is expected to arise from the 

double insertion reaction proposed for the production of dimethoxy-

methane-^C in methanol. The yield of the double insertion product is 
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substantially lower in the ethanol system reflecting the greater number 

of reaction possibilities. In the iodine scavenged system, the yield of 

11 
diethoxymethane- C undergoes a large increase which is believed to 

11 
result from the reaction of the iodomethylethyl ether- C with the 

solvent. A quantitative yield comparison such as that presented for 

methanol cannot be made in this system because the expected loss in 

yield of the congjleraentary product (l-ethoxy-2-propanol-^^C) cannot be 

verified, 

11 11 
The products 2-butanol- C and l-butene-3-ol- C bear a similar 

relationship to the products 1-propanol-^^C and allyl alcohol-^^C in 

the methanol system. Both products are believed to be results of the ' 

reactions of tagged entities with the radiation produced ethanol 

radicals. The following reactions are offered as possibilities, 

+ CH^CHOH > CH2=CH0HCH3 

11 . OH 
+ CH3CHOH > CH3CH2CHCH3 

XI 
The scavenger independence of the yield of 2-propyne-l-ol- C 

is indicative of a reaction -vdiich does not involve a radical inter­

mediate, A possible reaction pathway to this product involves the 

stabilization by loss of hydrogen of an excited carbon-11 insertion 

adduct, 

+ CH3CH2OH > [ir'-^C-CH2CH20H]* > H^^C5CCH20H + Hg 

Degradative studies to locate the position of the active carbon atom 

may provide support for this mechanism, A similar mechanism involving 

insertion into the "C-hydrogen of ethanol may result in the formation 

11̂  
of propyne- C, 
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CH3GHOH > CH^-C^'CH + H O 

11 • 11 
An excited propyne- C can readily isomerize to aliéné- C. The relative 

scavenger independence of the yields of these products is consistent 

with this rapid unimolecular decomposition and isomerization step. The 

ratio of propyne-^^C to allene-^^C is independent of scavenger and further 

supports the possibility of this isomerization process. 

The production of acetone-^^C may involve the insertion of a 

11 
raethyne- C radical into the cf-hydrogon of ethanol. The resultant adduct 

11 
can stabilize by loss of a hydrogen atom to acetone- C. 

r 0H_ n* On 
IICH 4. CH^CHgOH > CHjCBT^CHg > + H* 

11 
The scavenger dependence of the yield of 2-propanol- C is sirâlar 

11 
to that of othanol- C in the methanol system. In both cases, part of 

3.1 
tho reduction ic believed to rosult from the scavenging of methyl- C 

radicals which in the absence of scavenger-would have reacted with the 

radiation produced alcohol radical. 

11 • 11 9^ 
CĤ ' + CĤ CHOH > CĤ CHCĤ  

The yield of methyl iodide- C (+3.3$) is again less than the loss of 

11 11 
methane- C (-1.5/̂ ) and 2-propanol- C (-2.8̂ ) indicating that other 

possible radical pathways exist for the production of 2-propanol-^^C. 

The unscavenged methane-^^C may result from abstraction reactions by 

n 
hot methyl- C radicals. 

From the comparison of the yield of 1-propanol- C and 2-propanol-^^C 
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11 
to that of methylethyl ether- C in the scavenged ethanol system, an 

estimate of the C-H and 0-H insertion-stabilization probability can be 

obtained. This ratio, on a per bond basis, is 0-H/C-H - 1.8. 

Althou[;h this ratio is lower than that obtained by a- similar argument 

in methanol, it does support the general hypothesis of the greater 

reactivity of the 0-H bond. 

Structural Dependence of the and C2 Product Yields 

One of the objectives of this study was to obtain information 

bearing on the structural dependence of the fragmentation modes for a 

number of target molecules containing the carbonyl, hydroxyl and alkoxyl 

functional groups. For this purpose, the dose and scavongor dopondonco 

11 11 11 11 
of tho yiolds of carbon monoxide- C, methane- C, ethane- C, ethylene- C 

and acetylene-^^C were determined in the following group of compounds; 

methanol, ethanol, 1-propanol, 2-propanol, acetone, diethyl ether, methyl 

formate and methyl acetate. The results of these studies are summarized 

in Tables 6-I6. 

The reported results for the iodine scavenged acetone system 

(Table 11) represent only one determination. As mentioned in the 

experimental section, iodine was observed to react with acetone. This 

reaction is relatively slow and only became apparent days after the 

sangles were prepared. The reported determination was performed within 

hours of the sample preparation and the results are believed to be 

representative of the scavenged system. 

For diethyl ether (Table 14) and methyl formate (Table I3) 

dose studies in the scavenged systems were not performed. Since a 

majority of the previous data for the other scavenged systems indicated 
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12 22. Table 9. Yields of radioactive products as a result of the C(Y,n) C 
reaction in 1-propanol 

Product 
Yield, : 

Unscavengod 
Percent 

1.03x10"̂  

a b a b 

CO 11.3 ±0.5 9.57±0.5 12.7 ±0.2 12,7 ±0,2 

CH4 4.62±0.2 4.9W).2 2.76±0.11 3.17±0.11 

C2H5 0.6360.09 0.79±0.09 0.48±0.02 0.49±0.02 

C2% 5.30i0.2 4,4060.2 4.87±0.08 5.28±0,08 

C2H2 12,1 ±0,2 9.3160.15 12.9 ±0.2 13.2 ±0.2 

Total 33.9 ±0,6 29,0 ±0,6 33.7 ±0.3 34.8 ±0.3 

Dose (eV/molecule) a - 0.010, b - 0.070 
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X2 11 Table 10. Yields of radioactive products as a result of the C(Y,n) C . 
reaction in 2-propanol 

Yield, Percent 
Product Unscavenged = 9.7x10"^' 

a b a b 

CO 14.6 ±0.4 14.1 ±0.4 14.5 ±0.2 14.9 ±0.2 

4.9160.2 4,88±0«2 2.45±0.05 2.58±0.05 

C2H6 1.6910.17 1.55±0.17 1.11±0.07 1.20±0.07 

C2% 9.94±0.4 5.0960.4 9.7̂ 0.2 10.40±0.2 

C2H2 14.4 ±0.8 6«62±0.8 16.1 ±0.2 16.8 ±0.2 

Total 45.5 ±1.0 32.3 ±1.0 43.8 ±0.4 45.8 ±0,4 

Dose (eV/Molecule) a - 0.010, b - 0.070 



www.manaraa.com

92 

Table 11. Yields of radioactive products as a result of the ^^C(Y»n)^^C 
reaction in acetone 

Yield, Percent 
Product Unscavenged ^^2 " 9.97x10 

CO 30.2 iO.5 28.9 ±0.5 30.7 

1.37±0.12 1.76±0.12 0.5 

C2H6 1.52±0.16 1.84±0.16 0.9 

2̂% 
12.2 ±0.6 8.9 ±0.6 9.9 

C2H2 20.5 ±0.5 17.9 ±0.5 21.4 

Total 65.8 ±0.9 59.3 ±0.9 63.4 

Dose (eV/molecule) a - 0.010, b - 0.070, c - 0.0073 (one determination) 
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Table 12, Yields of radioactive products as a result of the ^^C(Y»n)^^C 
reaction in methyl acetate 

Product 
Yield, 

Unscavongod 
Percent 

Xr = 
h. 

9.86x10-4 

a b a b 

CO 37.1 ±0.6 33.5 ±0.6 40.6 ±1.0 41.6 ±1.0 

1.36±0.11 1.29±0.ll 0.72±0.04 0.63*0.04-

% 1.6260.07 1.7160.07 0.82±0.13 0.83±0.13 

C2% 7.64*0.17 6.10±0.17 7.7l±0.3 8.04±0.3 

C2H2 16.3 ±0.6 13.9 ±0.6 19.8 ±0.6 20.5 ±0.6 

Total 64.0 ±0.9 56.5 ±0.9 69.7 ±1.2 71.6 ±1.2 

Dose (eV/molecule) a - 0.020, b - 0.080 
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12 11 Table 13. Yields of radioactive products as a result of the C(Y,n) C 
reaction in methyl formate 

Yield, Percent 
Product Unscavenged • • X%g = 1.00x10"^ 

b 

CO 48.6 ±0.8 40.9 ±0.8 . 54.4 ±0.2 

C% 1.90±0.2 2.03±0.2 1.17±0.l6 . 

CgHa 1.29±0.18 1.71±0.18 0.72±0.09 

C2% 5.73±0.3 4.80±0.3 5.1̂ 0.2 

C2H2 13.8 ±0.5 11.6 ±0.5 15.9 ±0.4 

Total 71.3 ±1.0 61.0 ±1.0 77.4 ±0.5 

Dose (eV/molecule) a - 0,018, b - O.O7O 
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12. 11 Table 14. Yields of radioactive products as a result of the C(Y,n)  C 
reaction in diethyl ether 

Product 
Yield, Percent 

Unscavenged • • = 9.36x10*" 

CO 

C% 

C2H6 

C2% 

C2H2 

Total 

9.3860.3 

4.3360.13 

0.86±0.11 

8.35±0.i6 

16.9 ±0.3 

39.8 ±0.5 

9.4560.3 

4.84i0.13 

0.94±0,11 

8.27±0.i6 

16.4 ±0.3 

39.9 ±0.5 

9.40±0.10 

2.24±0.07 

0.6l±0.0? 

7.65±0.3 

17.4 ±0.6 

37.3 ±0.7 

Dose (eV/molecule) a - 0.020, b - 0.080 

Table 15. Gaseous product yield dependence upon iodine scavenger con­
centration in the diethyl ether system^ 

Yield. Percent 

II Product CO 2̂̂ 6 C2H4 C2H2 

0.00 9.38 4.33 0.86 8.35 16.88 

1.6x10 ̂  8.93 2.91 0.81 7.90 17.29 

4.4x10-4 9.23 2.51 0.67 7.92 17.69 

9.4x10"̂  9.41 2.24 0.61 7.65 17.41 

9.6x10""̂  9.87 1.59 0.45 7.07 16.78 

^Average Doso (eV/molocule) = 2x10"^ 
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Table l6. Summary of gaseous products in iodine scavenged systems^ 

Target Molecule 
CO 

Yield of Products, 

% 

Percent^ 

2̂̂ 4 CgHz 

Methanol 24.5 ±0.3 2.55±0.09 0.68±0.11 8.67±0.3 15.7±0.7 

Ethanol 17.0 ±0.6 2.70±0.08 0.63±0.03 7.23±0.12 13.7±0.3 

1-Propanol 12.7 ±0.2 2.83±0.11 0.48±0.02 4.94±0.08 13.0±0.2 

2-Propanol 14.5 ±0.2 2,48±0.05 1.12±0.07 9.85±0.2 I6.2±0.3 

Acetone 30.7 0.5 0.9 9.9 21.4 

Methyl ifcetate 40.6 ±1.0 0.72±0.04 0.82±0.13 7.7160.3 19.8±0.6 

Methyl Formate 54.4 ±0.2 1.17±0.l6 0,72±0.09 5.14±0.2 15.9±0.4 

Diethyl Ether 9.40±0.1 2.24t0.07 0.61±0.07 7.65±0.3 17.4±0.6 

lxlO"5 

fields calculated at dose & 2x10 ^ eV/molecule except for acetone where the listed 
values are a result of one low dose run, 7x10"-^ eV/molecule. 
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only a minor dose dependence of these products, the average value for a 

number of low dose runs was used to represent the data. 

In most of these systems, the yields of the C-j^ and Cg products were 

dose dependent. This dose dependence is believed to result from 

reactions of the product molecules with radiation produced radicals, 

although, in most cases, the radicals participating in these reactions 

have not been identified. 

A radiation produced reaction common to alcohols is the loss of 

the «(-hydrogen atom to give I^RgCOH. The observed radiolysis product 

resulting from the production of this radical is the «-glycol 

RiR2C(0H)C(0H)R]_R2. Indications of the possible reactions responsible 

11 11 
for the dose dependence of the yields of ethylene- C and acetylene- C 

in the alcohols may be obtained from studies of the addition reactions 

of 2-propanol to ethylene under the influence of a radiation field 

(160,161). For ethylene dissolved in liquid 2-propanol, Hirota and 

Hatada (I60) postulate the following sequence of reactions; 

(CH3)2CH0H (CHgjgCOH + H* 

(CBLÏgCOH + CgH^ > (CHgjgCCOHiCHgCHg 

(CH3)2C(0H)CH2CH2 + (CH3)2CHOH > (CH3)2C(0H)CH2CH3 + (CH3)2C0H 

Under the conditions of their study, a G value of 120 for tho pro­

duction of 2-methyl-2-butanol was measured. The high G value indicated 

that a chain mechanism was responsible for the production of the 

tertiary alcohol. Similar results and interpretation were presented 

by Kurihara and Hotta (161) for the gas phase system. This sequence of 

reactions may be responsible for the larf;e dose dependence of ethylene 

IX 
- C in 2-propanol (Table 10) although reduction by hydrogen atoms or 
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other radiation produced radicals cannot be excluded. Support for 

this proposal may be obtained if a definite relationship can be. estab­

lished between the loss of ethylene-^^C and the production of 2-methyl-2-

butanol-^^C. A similar sequence of reactions with production of 2-methyl-

11 11 
3-butene-2-ol- C can be postulated to account for the loss of acetylene- C 

in 2-propanol. Similar reactions may also account for the dose dependence 

of acetylene and ethylene in the other alcohol systems. However, in 

methanol and ethanol where the dose dependence of the complimentary products 

were measured, the experimental error was such that this proposal could not 

be verified for these systems. 

11 11 
The dose dependence of ethylene- C and acetylene- C in acetone 

(Table 11) may result from their reaction with H*, or 'CH^COCH^ 

followed by a subsequent hydrogen abstraction from the acetone. 

For the esters, methyl formate and methyl acetate, the dose 

11 ]i 
dependence of the ethylene- C and acetylene- C may also be attributed 

to reactions with the radicals produced by the radiation field. The 

radiation chemistry of methyl acetate has been studied by Ausloos and 

Trurabore (162) and by Hummel (I63). The complete radiolysis mechanism 

is not available for methyl acetate but the radiolysis results can be 

explained on the basis of known radical reactions and the assumption 

that every bond in the molecule with the exception of the C=0 bond is 

broken (158). The acetyl radical is a primary product from this 

dissociation and has been shown by Hirota, et al. (164) to undergo 

similar chain reactions with ethylene as presented earlier for the 

radical CH^C(0H)CH2. This may be the major radical reaction accounting 

11 11 
for the dose dependence of ethylene- C and possibly acetylene- C in 
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methyl acetate. The fornyl radical is expected to be produced in the 

radiolysis of methyl formate and may undergo similar reactions. The 

dose dependence observed for could possibly result from the 

11 
reactions of the acetyl and formyl radicals with the- CO, although no 

evidence is currently available to support this hypothesis, 

11 
In the diethyl ether system, was the only product that 

exhibited a yield dose dependence. This indicated that either the 

radicals produced by the radiation field are relatively unreactive 

towards these molecular products or the diethyl ether contained trace 

impurities (possibly peroxides) which acted as scavengers for the 

radiation produced radicals. No definite distinction can be made 

between these alternatives but the characteristic induction period 

representative of trace scavenger impurities was not observed. The 

11 
increasing yield of "CH^ with increasing dose may result from decompo­

sition of larger radioactive products by the radiation field. 

1 1 
In all of the iodine scavenged systems, the acetylene- C yield is 

higher than in the unscavenged systems when irradiated under similar 

dose conditions which indicates that acetylene-^^C reacts to some 

extent with the radiation produced radicals to produce build-up products. 

As discussed earlier, one of the major purposes of adding a radical 

scavenger is to reduce the concentration of the radicals produced by the 

radiation field. The other effect of the scavenger is to intercept 

some of the thermal radical intermediates to a specific product. The 

11 
fact that the acetylene- C yields are higher in the scavenged systems 

indicates that the part of the acetylene which is produced by way of a 

scavengeable radical intermediate is small in comparison to the yield 
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reduction observed by the radiation produced radicals. 

Evidence that a small fraction of the acetylene-^^C yield in 

diethyl ether involves a scavengeable radical intermediate is obtained 

from its dependence on the iodine scavenger concentration (Table 15 and 

Figure 9). Although the experimental error is large, a definite trend is 

evident. The yield is shown to increase initially but then decrease 

on further increase in the concentration of iodine scavenger. These 

results can be explained if the following sequence of reactions occurs. 

C + (CHgCHgjgO > CHECH ^ > Unknown Products 

( 2 )  (CH CHgï.O 

Acetylene Radical 
Intermediate 

\ 
R" 

(3) 
-> Unknown Products 

-> Unlcnown Products 
(4) 

The addition of iodine will efficiently lower the concentration of the 

radiation produced radicals, R*, which results in an initial increase in 

the acetylene yield due to the reduced 'importance of pathways 1 and 3. 

As the iodine concentration is further increased, the acetylene yield is 

decreased due to the increasing importance of pathway 4 relative to 2, 

Pathway 2 very likely involves reactions occurring within the solvent 

cage and only at high iodine concentrations can the effect of the 

scavenging be observed. The significance of this radical intermediate 

step is best studied in the gaseous phase where caging effects are not 

present. Evidence that a small fraction (15^ or less) of the acety-

11 
lene- C yield is a result of reactions that may involve a radical 
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figure 9. Iodine scavenger dependence of product yields in diethyl ether, dose 2xl0~^ 
eV/molecule 
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intermediate has been obtained from gas phase studies of specifically 

deuterated hydrocarbon molecules (63^65). The results obtained in this 

study are consistant with the previously discussed mechanism for 

11 
acetylene- C production involving a rapid unimolecular decomposition 

of the carbon atom C-H insertion adduct. 

11 
The ethylene- C yields in most of the systems studied show a 

significant decrease upon addition of scavenger quantities of iodine 

which indicates that some of the ethylene is produced by way of a 

radical intermediate. Evidence for the vinyl radical as the inter­

mediate in the production of part of the ethylene has been presented in 

the discussion of the methanol data. It is clear, however, that the 

major fraction of the ethylene yield results from insertion of 

into a primary C-H bond followed by rapid unimolecular decomposition. 

Support for this hypothesis was obtained from the data for the iodine 

scavenged 1- and 2-propanol systems where the ethylene-^^C yield was 

found to bo directly proportional to the number of primary C-H bonds 

in the molecule (Table I6). The scavenged system was chosen for this 

comparison in order to reduce the significance of the radical reactions 

and the effect of the radiation field. Further evidence that part of 

the yield of ethylene-^^C, at least in the diethyl ether system, is a 

result of a scavengable radical intermediate is presented in Table 15 

and illustrated in Figure 10. The yield of ethylene decreacoc with 

increasing iodine scavenger concentration; the initial rapid decrease 

is indicative of the scavenging of a thermal radical. The further 

decrease at high scavenger concentrations may result from competition 

11 
reactions for excited vinyl- C radicals within the solvent cage. 
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Figure 10. Iodine scavenger dependence of product yields in diethyl ether, dose 2xlO~^ 
eV/molecule 
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Similar results were obtained in the methanol system (see Table 7) 

which very likely indicates that in most unscavenged systems studied part 

of the ethylene yield involves a radical precursor. The addition of 

scavenger quantities of DPPH does not appear to affect the yields of 

11 11 
ethylene- C or ethane- C in methanol (Table 7)« No definite explana­

tion to account for these results can bo presented at the present time. 

Possibly, as a result of the large size of the DPPH radical and its low 

solubility in methanol (<10"%), the abstraction reaction of the 

11 11 
vinyl- C and ethyl- C radicals may be more than competitive with the 

scavenging reaction. 

The production of ethane-^^C in these systems is believed to result 

from insertion of ^^CH2 into a primary C-H bond followed by decomposition 

of the excited adduct to an ethyl-^^C radical. The excited radical may 

rapidly abstract hydrogen within the solvent cage or may reach thermal 

energies and be scavenged by added radical scavengers. The expected 

result of increasing the iodine scavenger concentration is observed in 

the diethyl ether and methanol systems (Table 15 and 7 and Figure 10). 

The ethane-^^C yield in the scavenged 1- and 2-propanol systems is 

approximately proportional to the number of primary C-H bonds in the 

molecule (Table l6). 

Methane-^^C is believed to result from a mechanism similar to 

that proposed for the production of ethane-^C, The major difference 

is that the methylene insertion adduct decomposes to ^^CH^v and that 

the initial insertion may also be into secondary or tertiary C-H bonds, 

A large fraction of the methane yield results from abstraction reactions 

of a thermal methyl radical. Evidence for this conclusion has been 
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11 
presented earlier in the discussion of the CH^ yields in the methanol 

and ethanol systems. This fact was further verified by the studies of 

the methane yield dependence on the iodine scavenger concentration in 

the diethyl ether and methanol systems (Tables 15 and ? and Figure 10). 

11 11 
If'the yields of CH^I and CH^ in the iodine scavenged methanol and 

ethanol systems are taken to represent the total produced, then 

11 
approxiinatoly 6'^ of tho radioactive carbon roacts as CH^' radicals. 

Quantitative correlations of the structural dependence of the 

products yields has proved very difficult. Although statistical inser­

tion of the primary reactants (e.g. and may occur, the 

decomposition step -will depend upon the structural features and energy 

content of the complex. The structural dependence of the yield of 

11 11 
ethylene- C and ethane- C in the 1- and 2-propanol systems has 

previously been discussed. The higher yield of acetylene-^^C in the 

2-propanol system is very likely a result of the greater number of 

primary C-H bonds in the molecule. The carbon insertion adduct resulting 

from primary C-H bond insertion can fragment to acetylene by the breaking 

of a C-C and C-H bond while the adduct resulting from secondary C-H 

insertion requires the breaking to two C-C bonds to form the same 

product. The latter process is statistically less probable. 

11 
Carbon monoxide- C was of particular interest since it is produced 

in relatively large yields in these systems and represents a major 

reaction mechanism for recoil carbon that has not been previously 

studied. The deoxygenation of a variety of oxygen containing organic 

compounds by vapor deposited carbon has been reported by Skell, et al. 

(110). The formation of carbon monoxide from compounds such as acetone, 
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methyl ethyl ketone, cyclopentanone, propylene oxide, diethyl ether, and 

tetrahydrofuran was observed. Water and the simple alcohols were not 

deoxygenated. This lack of deoxygenation may be a result of favorable 

competition from the 0-H insertion reactions, since this possibility is 

not available for the other conpounds. 

Deoxygenation with formation of is observed in all the systems 

investigated in this study. The yield of this product in the iodine 

scavenged systems can be correlated directly to a simple statistical model 

if the following suppositions are made; 1) Any primary or secondary C-H 

is 1.0 sites, tertiary C-H is 0.0 sites, and is 0.0 sites, 

2) Any -0- whether C-O-H or C-O-C is 1.0 sites and' 3) Any C=0 is 2,7 

sites. The site probability was obtained by using methanol and acetone 

as prototype molecules. The results of the statistical calculations of 

the product yields are presented in Table 1?. The agreement between 

the calculated and the experimental yield is much better than should be 

expected on the basis of this naive model. Although this model has a 

number of ambiguities that need further clarification, these results do 

allow some definite conclusions to be formulated concerning the mechanism 

for production. 

~ The statistical nature of the yield is indicative of the 

reactions of an indiscriminate reagent. The fact that the yields are 

predictable on an absolute basis in the alcohol and diethyl ether systems 

11 
may indicate that the CO results from a reaction which occurs over a 

definite range of recoil energy, above or below which the reaction 

probability is low. The high site probability for the reaction with the 

^=0 group may result from the larger electron cloud or from a larger 
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Table 17. Statistical nature of carbon monoxide yield in iodine 
scavenged systems^ 

Target CO Total CO Yield. 
b 

Percent 
Molecule Sites Sites Calci- Exp, 

Methanol 1,0 4,0 2j.O 24.5 ±0.3 

Ethanol 1,0 6.0 16.7 17.0 ±0,6 

1-Propanol 1.0 8.0 12.5 12,7 ±0.2 

2-Propanol 1.0 7.0 14.3 14.5 ±0.2 

Diethyl Ether • 1.0 11.0 9.1 9.40±0,1 

Acetone 2.7 8.7 31.0 30.7 

Methyl Acetate 3.7 9.7 38.2 40,6 ±1,0 

Methyl Formate . 3.7 6.7 55.2 54,4 ±0,2 

% = 1x10-3 

fields calculated at dose of 2x10 ̂  eV/molecule except for acetone 
where the listed value is a result of one low dose run, 7xlO"3 eV/molecule. 

energy region (possibly down to thermal energy) over which the reaction 

may occur. Since Skell, et al. (110) observed deoxygenation of acetone 

and diethyl ether for the vapor deposited carbon atoms, the excitation 

function for CO production may extend to thermal energies. 

These results also demonstrate that the reaction site probability is 

independent of whether the bond is a C-O-H or C-O-C bond, A possible 

rationaliiiation of these facts may be that the reaction is localised at 

the oxygen atom and that the reaction occurs at sufficiently high 

energies that the substituent groups do not affect the overall reaction 
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sequence. If this is the case, the reaction may be a result of the recoil, 

carbon atom interacting "with the nonbonding electrons of the oxygen atom. 

The tertiary C-H bond in 2-propanol and the C-H bond in methyl 

formate were assigned a site probability of zero. These assignments 

cannot be completely justified, A possible rationale in the case of 

2-propanol may be that the tertiary C-H bond is sterically hindered from 

attack by the mothyl group». If tho tortiary C-H bond is aaKi/zncd a :;ito 

probability of 1,0, then the data indicates that the -0- bond on a 

tertiary carbon atom is more reactive than a similar bond on a secondary 

carbon atom (I.e. a -0- bond on a tertiary carbon atom should be assigned 

a site probability >1.0). A combination of both of these factors is 

possible but at the present time, the data do not allow a more definite 

conclusion to be dra-wn. In the case of methyl formate, a reasonable 

explanation for the C-H bond site assignment is not apparent which 

indicates that further study.of the structural dependence of the ̂ ^CO 

yield is required if a more definitive model is desired. 

The effect of the iodine scavenger concentration on the yield of 

^^CO in diethyl ether is presented in Table 15 and illustrated in 

Figure 9« The shape of the curve is very difficult to rationalize on 

the basis of a simple reaction model but does demonstrate that a small 

fraction of the ̂ ^CO yield may result from complex and as yet unknown 

mechanisms. 
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CONCLUSIONS 

Recoil carbon-11 products resulting from the irradiation of liquid 

methanol, ethanol, 1-propanol, 2-propanol, acetone, diethyl ether, 

methyl acetate and methyl formate with 70 MeV brerasstrahlung have been 

identified and their yields determined. The effects of changes in dose 

and of the presence of iodine as scavenger were measured. The results 

were interpreted in terms of the reactions of ^^CH, ̂ ^CH2 and 

with the parent compound and the reactions of these radicals, other radical 

intermediates or product molecules with radiation produced radicals or 

added scavengers. 

In all systems studied, radiation modification of the primary products 

was observed. For the methanol and ethanol systems, where a study of the 

complete product spectrum was attempted, relationships were established 

between a number of the dose dependent products. In methanol, the 

solvated electron and the 'CHgOH radical were shown to be the primary 

radicals responsible for the dose dependence of the yields of labelled 

products; carbon monoxide, carbon dioxide, acetaldehyde and 1,2-pro-

panediol. 

A complete reaction scheme was proposed for the reactions of recoil 

carbon in methanol. It was observed that the intermediate carbenes, 

H-^^CCH20H and CH-jO-^^CH insert more readily in the 0-H than the 

C-H bond. No evidence for C-0 insertion reactions by or the 

intermediate carbenes was obtained although carbon atoms appear to react 

with this bond. This reactions may be by way of cyclic intermediate, 

thus accounting for the production of acetaldehyde and methyl acetate. 
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The ethanol data was interpreted in light of the proposed reaction 

sequence in methanol. However, because of the increased complexity of 

this system, a detailed analysis of the data was more difficult. The 

reactions attributed to the solvated electron in methanol were not 

observed in ethanol because the radiolysis product acetaldehyde acts as 

an efficient electron scavenger. In ethanol, the radical CH^CHOH was 

shown to participate in a number of the reaction sequences involving 

thermal radical intermediates. The extreme scavenger dependence of the 

dialko%ymethane yields in methanol and ethanol was attributed to the 

scavenging of radical intermediates by iodine and the subsequent reaction 

of the products, <»C-iodoethers, with the solvent. 

The influence of molecular structure on the yields of the and Cg 

11 
products was studied in all of the compounds. The yield of ethylene- C 

in iodine scavenged 1- and 2-propanol and the dependence of its yield in 

methanol and diethyl ether on the iodine concentration were used as a 

basis of a proposed mechanism for the production of ethylene, involving 

the insertion of the methyne radical into a primary C-H bond fonowed by 

rapid unimolecular decomposition. 

The yields of ̂ ^CO, one of the major products resulting from the 

reactions of recoil carbon in these systems, were interpreted in terms 

of a statistical model for carbon atom reactions. Although a few-

ambiguities exist in the model, the data give important insights into 

the mechanisri for its production. In the alcohol and ether systems, 

was considered to result from the reaction of an energetic carbon 

atom with the nonbonding electrons on oxygen, Deoxygenation with 

formation of carbon monoxide was also observed to occur at the )c=0 group. 
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The formation of ̂ CO was nearly three times as probable at a ^C=0 group 

as at a C-Û-H or C-O-C group. 

The yields of all products were determined on an absolute basis and 

the sample dose was estimated using cobalt glass dosimetry. No degra-

dativo studies wore performed although such information would bo useful. 

Because of the limitations present at the synchrotron, phase studies 

were impossible. Redesign of the acceleration chamber and irradiation 

port is now under way and phase studies at lower doses may be a future 

possibility. 

As occurs in any research project, more questions develop than are 

answered and much research is still required in these systems if the 

details of the proposed reaction sequences are to be fully understood. 

It is sincerely hoped that this research will provide stimulation for 

further investigation in this area. 
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APPENDIX 

Table 18. Chromatographic columns used for product separations^ 

1. 18'-30/^ Carbowax 20M (F&M Scientific) on Chromosorb W A. W. DMCS, 
45-60 Mesh (F&M Scientific). 

2. 18' and Tripropionin (K&K Laboratories) on Chromosorb P, 
45-60 Mesh (F&M Scientific). 

3. 30'-35/o 2-Ebhylhe%yl Acetate (Eastman Organic) on Chromosorb P, 
45-60 Mesh (F&M Scientific). 

4. 28*-30/(j Diisodecyl Phthalate (Monsanto) on Chromosorb W A. W., 
45-60 Mesh (F&M Scientific). 

5. 20'-30/o Triisovalerin (K&IC Laboratories) on Chromosorb W A. W. 
DMCS, 45-60 Mesh (F&M Scientific). 

6. 20'-30/o Di Butoxy Tetraglycol (Carbide and Carbon Chemicals) 
on Chromosorb W-. A. W. DMCS, 45-60 Mesh (F&Ii Scientific). 

7. 14' - Molecular Sieve-Linde Type 5A (Matheson Coleman & Bell) 
40-60 Mesh. 

8. 10' - Silica Gel (Fisher Scientific), 14-20 Mesh. 

9. 20'-20$ Tricaprylin (K&K Laboratories) on Anakrom PA, 5O-6O Mesh 
(Analabs). 

10. 20'-25^ Ethyl Cinnamate (Matheson Coleman & Bell) on Chromosorb W 
A. W., 45-60 Mesh (F&M Scientific). 

^All columns were fabricated from 8 mm Pyrex tubing. 
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